R data.table 패키지를 사용하다 보면 base R이나 tydeverse 에서는 사용하지 않는, data.table에서만 사용하는 .SD, .SDcols, .N 등의 매개변수를 볼 수 있는데요, 이게 data.table 패키지를 굉장히 이질적이고 코드가 이해가 되지 않는 어려운 프로그래밍 언어라는 첫인상을 주는 것 같습니다.  사실 이 첫번째 관문만 무사히 넘으면 data.table 의 강력함과 간결함에 매료될만도 한데 말이지요.

 

이번 포스팅에서는 data.table의 vignettes을 참조하여 R의 data.table 패키지에서

 

(1) .SD는 무엇인가? (What is .SD in data.table?)

(2) .SDcols 로 일부 칼럼만 가져오기 (Column Subsetting using .SDcols)

(3) lapply()와 .SDcols로 칼럼 유형 변환하기 (Column Type Conversion)

(4) 패턴이 일치하는 특정 칼럼만 가져오기 (Column subsetting using pattern-based matching)

 

에 대해서 소개하겠습니다.

 

 

(1) .SD는 무엇인가? (What is .SD in data.table package?)

 

data.table 패키지에서 .SD 는 "데이터의 부분집합, 데이터 자기 자신, 데이터의 자기 참조" ( 'Subset, Selfsame, or Self-reference of the Data')를 의미한다고 이해할 수 있습니다.  다시 말하자면, .SD는 data.table 자기 자신에 대한 재귀적인 참조 (a reflexive reference to the data.table), data.table 그 자체 (data.table itself) 를 의미합니다.

 

 

R의 Lahman database에 있는 야구 팀과 투수의 통계 데이터를 사용해서 예를 들어보겠습니다.  setDT(Pitching) 은 Lists와 DataFrame을 참조해서 Data.Table로 만들어줍니다.

 

먼저, 아래의 예는 .SD 를 사용해서 'Pitching' data.table 자체를 재귀적으로 참조해오는 예입니다. (복사가 아니라 참조임. not copy, but referece to the Pitching data.table)

 

library(data.table)

## .SD stands for Subset, Selfsame, or Self-reference of the Data.
## .SD is a reflexive reference to the data.table itself. 
## .SD is helpful for chaining together "queries" (extractions/subsets/etc using [). 


## Lahman database on baseball
install.packages("Lahman")
library(Lahman)

data("Pitching")
setDT(Pitching)
str(Pitching)
# Classes 'data.table' and 'data.frame':	47628 obs. of  30 variables:
#   $ playerID: chr  "bechtge01" "brainas01" "fergubo01" "fishech01" ...
# $ yearID  : int  1871 1871 1871 1871 1871 1871 1871 1871 1871 1871 ...
# $ stint   : int  1 1 1 1 1 1 1 1 1 1 ...
# $ teamID  : Factor w/ 149 levels "ALT","ANA","ARI",..: 97 142 90 111 90 136 111 56 97 136 ...
# $ lgID    : Factor w/ 7 levels "AA","AL","FL",..: 4 4 4 4 4 4 4 4 4 4 ...
# $ W       : int  1 12 0 4 0 0 0 6 18 12 ...
# $ L       : int  2 15 0 16 1 0 1 11 5 15 ...
# $ G       : int  3 30 1 24 1 1 3 19 25 29 ...
# $ GS      : int  3 30 0 24 1 0 1 19 25 29 ...
# $ CG      : int  2 30 0 22 1 0 1 19 25 28 ...
# $ SHO     : int  0 0 0 1 0 0 0 1 0 0 ...
# $ SV      : int  0 0 0 0 0 0 0 0 0 0 ...
# $ IPouts  : int  78 792 3 639 27 3 39 507 666 747 ...
# $ H       : int  43 361 8 295 20 1 20 261 285 430 ...
# $ ER      : int  23 132 3 103 10 0 5 97 113 153 ...
# $ HR      : int  0 4 0 3 0 0 0 5 3 4 ...
# $ BB      : int  11 37 0 31 3 0 3 21 40 75 ...
# $ SO      : int  1 13 0 15 0 0 1 17 15 12 ...
# $ BAOpp   : num  NA NA NA NA NA NA NA NA NA NA ...
# $ ERA     : num  7.96 4.5 27 4.35 10 0 3.46 5.17 4.58 5.53 ...
# $ IBB     : int  NA NA NA NA NA NA NA NA NA NA ...
# $ WP      : int  7 7 2 20 0 0 1 15 3 44 ...
# $ HBP     : int  NA NA NA NA NA NA NA NA NA NA ...
# $ BK      : int  0 0 0 0 0 0 0 2 0 0 ...
# $ BFP     : int  146 1291 14 1080 57 3 70 876 1059 1334 ...
# $ GF      : int  0 0 0 1 0 1 1 0 0 0 ...
# $ R       : int  42 292 9 257 21 0 30 243 223 362 ...
# $ SH      : int  NA NA NA NA NA NA NA NA NA NA ...
# $ SF      : int  NA NA NA NA NA NA NA NA NA NA ...
# $ GIDP    : int  NA NA NA NA NA NA NA NA NA NA ...
# - attr(*, ".internal.selfref")=<externalptr>



## .SD on Ungrouped Data
## In terms of subsetting, .SD is a subset of the data, the set itself. 

Pitching[, .SD]
# playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR BB SO BAOpp
# 1: bechtge01   1871     1    PH1   NA  1  2  3  3  2   0  0     78  43  23  0 11  1    NA
# 2: brainas01   1871     1    WS3   NA 12 15 30 30 30   0  0    792 361 132  4 37 13    NA
# 3: fergubo01   1871     1    NY2   NA  0  0  1  0  0   0  0      3   8   3  0  0  0    NA
# 4: fishech01   1871     1    RC1   NA  4 16 24 24 22   1  0    639 295 103  3 31 15    NA
# 5: fleetfr01   1871     1    NY2   NA  0  1  1  1  1   0  0     27  20  10  0  3  0    NA
# ---                                                                                       
#   47624: zamorda01   2019     1    NYN   NL  0  1 17  0  0   0  0     26  10   5  1  5  8 0.294
# 47625: zeuchtj01   2019     1    TOR   AL  1  2  5  3  0   0  0     68  22  12  2 11 20 0.250
# 47626: zimmejo02   2019     1    DET   AL  1 13 23 23  0   0  0    336 145  86 19 25 82 0.311
# 47627: zimmeky01   2019     1    KCA   AL  0  1 15  0  0   0  0     55  28  22  2 19 18 0.337
# 47628: zobribe01   2019     1    CHN   NL  0  0  1  0  0   0  0      3   0   0  0  2  1 0.000
# ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
# 1:  7.96  NA  7  NA  0  146  0  42 NA NA   NA
# 2:  4.50  NA  7  NA  0 1291  0 292 NA NA   NA
# 3: 27.00  NA  2  NA  0   14  0   9 NA NA   NA
# 4:  4.35  NA 20  NA  0 1080  1 257 NA NA   NA
# 5: 10.00  NA  0  NA  0   57  0  21 NA NA   NA
# ---                                           
#   47624:  5.19   1  0   1  0   41  3   5  0  1    0
# 47625:  4.76   0  2   0  0   99  0  13  0  0    1
# 47626:  6.91   2  3   6  0  504  0  89  3  4    5
# 47627: 10.80   0  2   0  0  102  3  22  0  0    1
# 47628:  0.00   0  0   0  0    5  1   0  0  0    0

 

 

Pitching[, .SD] 는 단순히 Pitching data.table 자체를 그대로 반환하는데요, identical() 로 두 data.table이 동일한지 여부를 확인해보면 TRUE 입니다.

 

identical(Pitching, Pitching[ , .SD])
# [1] TRUE

 

 

(2) .SDcols 로 일부 칼럼만 가져오기 (Column Subsetting using .SDcols)

 

.SD 를 사용하는 가장 일반적인 예는 .SDcols와 함께 일부 칼럼의 부분집합을 선택해서 가져오는 것입니다. 

 

아래 예에서는 Pitching[, .SD] 로 Pitching data.table 자체를 재귀적으로 참조한 후에 --> Pitching[, .SD, .SDcols = c("playerID", "W", "L", "G")] 처럼 .SDcols 에 칼럼 이름을 넣어줘서 일부 칼럼만 선택적으로 가져와 보겠습니다.

 

library(data.table)

library(Lahman)
data("Pitching")

## Coerce lists and Data.Frames to Data.Table by Reference
setDT(Pitching)


## ** Column Subsetting: .SDcols **
Pitching[, .SD, .SDcols = c("playerID", "W", "L", "G")]

# playerID  W  L  G
# 1: bechtge01  1  2  3
# 2: brainas01 12 15 30
# 3: fergubo01  0  0  1
# 4: fishech01  4 16 24
# 5: fleetfr01  0  1  1
# ---                   
#   47624: zamorda01  0  1 17
# 47625: zeuchtj01  1  2  5
# 47626: zimmejo02  1 13 23
# 47627: zimmeky01  0  1 15
# 47628: zobribe01  0  0  1



 

(3) 칼럼 유형 변환하기 (Column Type Conversion)

 

이번에는 lapply()와 .SDcols를 사용해서 data.table에서 여러개 칼럼의 유형을 한꺼번에 변환해보겠습니다.

 

먼저, setDT(Teams) 로 'Teams' DataFrame을 참조하여 Data.Table로 만들고, c('teamIDBR', 'teamIDlahman45', 'teamIDretro') 의 3개 칼럼이 '문자형 인지 여부(is.character)'를 확인해보겠습니다. 3개 칼럼 모두 is.character()가 TRUE 이므로 문자형 맞군요.

 

library(data.table)

## Lahman database on baseball
install.packages("Lahman")
library(Lahman)
data(Teams)

## Coerce lists and Data.Frames to Data.Table by Reference
setDT(Teams)

str(Teams)
# Classes 'data.table' and 'data.frame':	2925 obs. of  48 variables:
#   $ yearID        : int  1871 1871 1871 1871 1871 1871 1871 1871 1871 1872 ...
# $ lgID          : Factor w/ 7 levels "AA","AL","FL",..: 4 4 4 4 4 4 4 4 4 4 ...
# $ teamID        : Factor w/ 149 levels "ALT","ANA","ARI",..: 24 31 39 56 90 97 111 136 142 8 ...
# $ franchID      : Factor w/ 120 levels "ALT","ANA","ARI",..: 13 36 25 56 70 85 91 109 77 9 ...
# $ divID         : chr  NA NA NA NA ...
# $ Rank          : int  3 2 8 7 5 1 9 6 4 2 ...
# $ G             : int  31 28 29 19 33 28 25 29 32 58 ...
# $ Ghome         : int  NA NA NA NA NA NA NA NA NA NA ...
# $ W             : int  20 19 10 7 16 21 4 13 15 35 ...
# $ L             : int  10 9 19 12 17 7 21 15 15 19 ...
# $ DivWin        : chr  NA NA NA NA ...
# $ WCWin         : chr  NA NA NA NA ...
# $ LgWin         : chr  "N" "N" "N" "N" ...
# $ WSWin         : chr  NA NA NA NA ...
# $ R             : int  401 302 249 137 302 376 231 351 310 617 ...
# $ AB            : int  1372 1196 1186 746 1404 1281 1036 1248 1353 2571 ...
# $ H             : int  426 323 328 178 403 410 274 384 375 753 ...
# $ X2B           : int  70 52 35 19 43 66 44 51 54 106 ...
# $ X3B           : int  37 21 40 8 21 27 25 34 26 31 ...
# $ HR            : int  3 10 7 2 1 9 3 6 6 14 ...
# $ BB            : int  60 60 26 33 33 46 38 49 48 29 ...
# $ SO            : int  19 22 25 9 15 23 30 19 13 28 ...
# $ SB            : int  73 69 18 16 46 56 53 62 48 53 ...
# $ CS            : int  16 21 8 4 15 12 10 24 13 18 ...
# $ HBP           : int  NA NA NA NA NA NA NA NA NA NA ...
# $ SF            : int  NA NA NA NA NA NA NA NA NA NA ...
# $ RA            : int  303 241 341 243 313 266 287 362 303 434 ...
# $ ER            : int  109 77 116 97 121 137 108 153 137 166 ...
# $ ERA           : num  3.55 2.76 4.11 5.17 3.72 4.95 4.3 5.51 4.37 2.9 ...
# $ CG            : int  22 25 23 19 32 27 23 28 32 48 ...
# $ SHO           : int  1 0 0 1 1 0 1 0 0 1 ...
# $ SV            : int  3 1 0 0 0 0 0 0 0 1 ...
# $ IPouts        : int  828 753 762 507 879 747 678 750 846 1548 ...
# $ HA            : int  367 308 346 261 373 329 315 431 371 573 ...
# $ HRA           : int  2 6 13 5 7 3 3 4 4 3 ...
# $ BBA           : int  42 28 53 21 42 53 34 75 45 63 ...
# $ SOA           : int  23 22 34 17 22 16 16 12 13 77 ...
# $ E             : int  243 229 234 163 235 194 220 198 218 432 ...
# $ DP            : int  24 16 15 8 14 13 14 22 20 22 ...
# $ FP            : num  0.834 0.829 0.818 0.803 0.84 0.845 0.821 0.845 0.85 0.83 ...
# $ name          : chr  "Boston Red Stockings" "Chicago White Stockings" "Cleveland Forest Citys" "Fort Wayne Kekiongas" ...
# $ park          : chr  "South End Grounds I" "Union Base-Ball Grounds" "National Association Grounds" "Hamilton Field" ...
# $ attendance    : int  NA NA NA NA NA NA NA NA NA NA ...
# $ BPF           : int  103 104 96 101 90 102 97 101 94 106 ...
# $ PPF           : int  98 102 100 107 88 98 99 100 98 102 ...
# $ teamIDBR      : chr  "BOS" "CHI" "CLE" "KEK" ...
# $ teamIDlahman45: chr  "BS1" "CH1" "CL1" "FW1" ...
# $ teamIDretro   : chr  "BS1" "CH1" "CL1" "FW1" ...
# - attr(*, ".internal.selfref")=<externalptr> 


## check whether columns are character type or not
col_lists = c('teamIDBR', 'teamIDlahman45', 'teamIDretro')
Teams[, sapply(.SD, is.character), .SDcols = col_lists]
# teamIDBR teamIDlahman45    teamIDretro 
# TRUE           TRUE           TRUE


head(unique(Teams[[col_lists[1L]]]))
# [1] "BOS" "CHI" "CLE" "KEK" "NYU" "ATH"

 

 

이제 위의 3개 문자형 칼럼들을 요인형(factor type)으로 lapply()와 .SDcols 를 사용해서 한꺼번에 데이터 유형을 변환해보겠습니다.

 

이때 주의를 해야 할 것이 있는데요, 아래에 색깔을 칠해 놓은 것처럼, (col_lists) 처럼 괄호 () 로 싸주어야 col_lists 안의 3개 칼럼 이름을 인식해서 할당을 해줍니다. (괄호를 안쳐주면 'col_lists' 라는 이름으로 할당해버립니다.)

 

Teams[ , (col_lists) := lapply(.SD, factor), .SDcols = col_lists]

 

## Converting columns to factor by adding the := assignment operator.
## we must wrap fkt in parentheses () to force data.table to interprete this as column names.
Teams[ , (col_lists) := lapply(.SD, factor), .SDcols = col_lists]

 

col_lists의 3개 칼럼의 데이터 유형이 무엇인지 확인해보면, 요인형(factor)로 잘 변환이 되었네요.

sapply(Teams[, .SD, .SDcols = col_lists], class)
# teamIDBR teamIDlahman45    teamIDretro 
# "factor"       "factor"       "factor"



head(unique(Teams[[col_lists[1L]]]))
# [1] BOS CHI CLE KEK NYU ATH
# 101 Levels: ALT ANA ARI ATH ATL BAL BLA BLN BLU BOS BRA BRG BRO BSN BTT BUF BWW CAL CEN CHC ... WSN

 

 

(4) 패턴이 일치하는 특정 칼럼만 가져오기 (Column subsetting using pattern-based matching)

 

data.table의 .SDcols는 패턴 매칭을 지원합니다. 아래의 예에서는 'Teams' Data.Table에서 'team' 이라는 단어가 들어가 있는 칼럼 이름(.SDcols = patterns('team'))을 선별해서 가져와 보겠습니다.

 

names(Teams)

# [1] "yearID"         "lgID"           "teamID"         "franchID"       "divID"         
# [6] "Rank"           "G"              "Ghome"          "W"              "L"             
# [11] "DivWin"         "WCWin"          "LgWin"          "WSWin"          "R"             
# [16] "AB"             "H"              "X2B"            "X3B"            "HR"            
# [21] "BB"             "SO"             "SB"             "CS"             "HBP"           
# [26] "SF"             "RA"             "ER"             "ERA"            "CG"            
# [31] "SHO"            "SV"             "IPouts"         "HA"             "HRA"           
# [36] "BBA"            "SOA"            "E"              "DP"             "FP"            
# [41] "name"           "park"           "attendance"     "BPF"            "PPF"           
# [46] "teamIDBR"       "teamIDlahman45" "teamIDretro" 



## pattern-based matching of columns in .SDcols to select all columns 
## which contain team back to factor. 
Teams[ , .SD, .SDcols = patterns('team')]

# teamID teamIDBR teamIDlahman45 teamIDretro
# 1:    BS1      BOS            BS1         BS1
# 2:    CH1      CHI            CH1         CH1
# 3:    CL1      CLE            CL1         CL1
# 4:    FW1      KEK            FW1         FW1
# 5:    NY2      NYU            NY2         NY2
# ---                                           
#   2921:    SLN      STL            SLN         SLN
# 2922:    TBA      TBR            TBA         TBA
# 2923:    TEX      TEX            TEX         TEX
# 2924:    TOR      TOR            TOR         TOR
# 2925:    WAS      WSN            MON         WAS

 

아래의 예는 team_idx = grep('team', names(Teams), value=TRUE)로, 먼저 names(Teams)를 통해 얻은 전체 칼럼 이름들 중에서 'team'이 들어가 있는 칼럼 이름을 찾아서 team_idx 에 저장을 해주었습니다.  다음으로, 위의 (3)번에서 했던 lapply()와 .SD, .SDcols를 이용하여 칼럼 이름에 'team'이 들어간 모든 칼럼의 데이터 유형을 요인형(factor type)으로 일괄 변환해주었습니다.

 

team_idx = grep('team', names(Teams), value = TRUE)
team_idx

# [1] "teamID"         "teamIDBR"       "teamIDlahman45" "teamIDretro"



Teams[ , (team_idx) := lapply(.SD, factor), .SDcols = team_idx]
sapply(Teams[, .SD, .SDcols = team_idx], class)

# teamID       teamIDBR teamIDlahman45    teamIDretro 
# "factor"       "factor"       "factor"       "factor"

 

[ Reference ]

* R data.table vignettes 'Using .SD for Data Analysis'

  : cran.r-project.org/web/packages/data.table/vignettes/datatable-sd-usage.html

 

 

이번 포스팅이 많은 도움이 되었기를 바랍니다.

행복한 데이터 과학자 되세요!  :-)

 

728x90
반응형
Posted by Rfriend
,

이전 포스팅들 중에 tapply(), sapply()에 대해서 다른 함수를 설명하는 와중에 은근슬쩍 짧게 소개를 한적이 있습니다.

 

그런데 그때는 다른 함수를 설명하는 것이 주된 목적이다보니 tapply()만 따로 한두줄 소개하고 말고, 또는 sapply()만 따로 한두줄 설명하고 마는 식이었습니다. 

 

이번에는 복습도 할겸, 또 apply() 삼총사인 tapply(), sapply(), lapply() 가 각 각 뭐가 다르고, 무슨 특징이 있고, 어떤 때 쓰는 것인지에 대해서 비교해가면서 중점적으로 살펴보도록 하겠습니다.

 

 간략히 요약해서 비교하자면 아래와 같습니다.

 

함수 

 사용 목적

사용 형태

    결과 

 tapply()

요인(factor)의 수준(level)별로

특정 벡터에 함수 명령어를

동시에 적용

 tapply(벡터, 요인, 함수)

 벡터 또는 행렬

 sapply()

데이터 프레임 여러 변수에 함수

명령어 동시에 적용

 sapply(데이터 프레임, 함수)

 lapply(데이터 프레임, 함수)

 벡터 또는 행렬

 lapply()

 리스트

 

tapply()가 다른 두 함수와 다른 점은 tapply()는 요인(factor) 변수를 기준으로 해서 그룹별로 나누어서 통계 분석을 하고자 할 때 유용하게 쓸 수 있는 함수입니다.  아래 예시를 보면 좀더 직관적으로 이해할 수 있을 겁니다.

 

sapply()와 lapply()는 사용 목적이나 사용 형태는 동일합니다만, 차이점이 있다면 결과가 sapply()는 벡터 또는 행렬로 나오는 반면에, lapply()는 결과가 리스트로 나온다는 점입니다. 하나씩 예를 들어 설명해보도록 하겠습니다.

 

 

(1) tapply() : 요인의 수준별로 특정 벡터에 함수 명령어를 동시에 적용

 

MASS 패키지에 내장되어 있는 Cars93 데이터를 가지고 차량 유형(Type)별 고속도록 연비(MPG.highway)의 평균과 표준편차를 tapply()를 활용해 구해보겠습니다.  차량 유형별(Type)은 Compact, Large, Midsize, Small, Sporty, Van 의 6개의 수준(Level)로 구성된 요인(factor)입니다.

 

 

> library(MASS) > str(Cars93) 'data.frame': 93 obs. of 27 variables: $ Manufacturer : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ... $ Model : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ... $ Type : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ... $ Min.Price : num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ... $ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ... $ Max.Price : num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ... $ MPG.city : int 25 18 20 19 22 22 19 16 19 16 ... $ MPG.highway : int 31 25 26 26 30 31 28 25 27 25 ... $ AirBags : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ... $ DriveTrain : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ... $ Cylinders : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ... $ EngineSize : num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ... $ Horsepower : int 140 200 172 172 208 110 170 180 170 200 ... $ RPM : int 6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ... $ Rev.per.mile : int 2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ... $ Man.trans.avail : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ... $ Fuel.tank.capacity: num 13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ... $ Passengers : int 5 5 5 6 4 6 6 6 5 6 ... $ Length : int 177 195 180 193 186 189 200 216 198 206 ... $ Wheelbase : int 102 115 102 106 109 105 111 116 108 114 ... $ Width : int 68 71 67 70 69 69 74 78 73 73 ... $ Turn.circle : int 37 38 37 37 39 41 42 45 41 43 ... $ Rear.seat.room : num 26.5 30 28 31 27 28 30.5 30.5 26.5 35 ... $ Luggage.room : int 11 15 14 17 13 16 17 21 14 18 ... $ Weight : int 2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ... $ Origin : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ... $ Make : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ... >
> # 차량 Type별 고속도로 연비 평균
>
with(Cars93, tapply(MPG.highway, Type, mean)) Compact Large Midsize Small Sporty Van 29.87500 26.72727 26.72727 35.47619 28.78571 21.88889 >
> 차량 Type별 고속도로 연비 표준편차

> with(Cars93, tapply(MPG.highway, Type, sd))
 Compact    Large  Midsize    Small   Sporty      Van 
2.941088 1.272078 2.510584 5.609091 3.641187 1.452966 

 

만약 tapply()를 활용하지 않는다면

 - Cars93을 Type별로 MPG.highway를 쪼개서 (split()함수 또는 subset() 함수를 활용해서)

 - 각 수준(level)별로 쪼개진 벡터에다가 개별적으로 평균, 표준편차 함수를 일일이 적용한 후에 ...(만약 수준이 100개면 100번 반복작업)

 - 각 결과치를 indexing 해와서 cbind()혹은 rbind()로 묶어서 결과를 취합

하는 단순 반복 작업을 진행해야 합니다. tapply()가 손발의 고생을 덜어주는 유용한 함수라는 것을 알 수 있을 것입니다.

 

 

(2) sapply() : 데이터 프레임 여러 변수에 함수 명령어 동시 적용 
    (결과는 벡터 또는 행렬)

 

sapply()함수를 활용하여 Cars93의 27개 변수 각각의 속성(class)를 알아보도록 하겠습니다.

 

> sapply(Cars93, class)
      Manufacturer              Model               Type          Min.Price              Price          Max.Price 
          "factor"           "factor"           "factor"          "numeric"          "numeric"          "numeric" 
          MPG.city        MPG.highway            AirBags         DriveTrain          Cylinders         EngineSize 
         "integer"          "integer"           "factor"           "factor"           "factor"          "numeric" 
        Horsepower                RPM       Rev.per.mile    Man.trans.avail Fuel.tank.capacity         Passengers 
         "integer"          "integer"          "integer"           "factor"          "numeric"          "integer" 
            Length          Wheelbase              Width        Turn.circle     Rear.seat.room       Luggage.room 
         "integer"          "integer"          "integer"          "integer"          "numeric"          "integer" 
            Weight             Origin               Make 
         "integer"           "factor"           "factor"

 

 

만약 sapply()함수를 사용하지 않는다면,

 - class(Cars93$Manufacturer); class(Cars93$Model); class(Cars93$Type);   ...(중략).... ; class(Cars93$Make)

처럼 변수의 갯수만큼 (여기서는 27번) 단순 반복 작업을 해야합니다.

sapply()는 한줄이면 될 것을 말입니다.

 

 

(3) lapply() : 데이터 프레임 여러 변수에 함수 명령어 동시 적용
    (결과는 리스트)
 

 

 이번에는 lapply()함수로 Cars93 내 27개 변수의 속성(class)을 알아보도록 하겠습니다.  명령문 순서는 sapply()와 lapply()가 동일합니다만, 결과가 나오는 형태가 서로 다름을 확인할 수 있습니다. lapply()는 아래처럼 list 형태로 결과가 나옵니다. 필요한 부분 indexing 하기에 편리하겠지요.

 

> lapply(Cars93, class)
$Manufacturer
[1] "factor"

$Model
[1] "factor"

$Type
[1] "factor"

$Min.Price
[1] "numeric"

$Price
[1] "numeric"

$Max.Price
[1] "numeric"

$MPG.city
[1] "integer"

$MPG.highway
[1] "integer"

$AirBags
[1] "factor"

$DriveTrain
[1] "factor"

$Cylinders
[1] "factor"

$EngineSize
[1] "numeric"

$Horsepower
[1] "integer"

$RPM
[1] "integer"

$Rev.per.mile
[1] "integer"

$Man.trans.avail
[1] "factor"

$Fuel.tank.capacity
[1] "numeric"

$Passengers
[1] "integer"

$Length
[1] "integer"

$Wheelbase
[1] "integer"

$Width
[1] "integer"

$Turn.circle
[1] "integer"

$Rear.seat.room
[1] "numeric"

$Luggage.room
[1] "integer"

$Weight
[1] "integer"

$Origin
[1] "factor"

$Make
[1] "factor"

 

 



lapply() 와 람다 함수 function(x) 를 같이 응용하면 다양한 아이디어를 내서 재미있고 유용한 것들을 할 수 있습니다. 가령, 데이터프레임 칼럼의 이름이 "var_"로 시작하면 이 부분을 "x_"로 칼럼 이름을 일괄 변경하는 작업을 lapply()와 function(x) {gsub("var_", "x_", x)} 를 사용하여 해보겠습니다. 



> var_1 <- c(1:3)

> var_2 <- c(4:6)

> var_3 <- c(7:9)

> df <- data.frame(var_1, var_2, var_3)

> df

  var_1 var_2 var_3

1     1     4     7

2     2     5     8

3     3     6     9


> # change all column names from "var_" to "x_" using lapply() & lambda function

> colnames(df) <- lapply(colnames(df), function(x) {gsub("var_", "x_", x)})

> df

  x_1 x_2 x_3

1   1   4   7

2   2   5   8

3   3   6   9

 



이상으로 apply() 삼총사, 명령문 단순 동일 반복을 한방에 해결할 수 있는, 그래서 손발의 수고를 덜어주는 tapply(), sapply(), lapply()에 대해서 알아보았습니다.  

 

도움이 되었기를 바랍니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

728x90
반응형
Posted by Rfriend
,