이번 포스팅에서는 1. plt.subplot() 2. plt.subplots() 를 이용해서 


(1) (nrows=1, ncols=3)개의 복수의 하위 막대 그래프를 그리는 방법

     (multiple subplots of bar plots using plt.subplot())

(2) 복수의 막대 그래프 간에 y 축의 단위를 고정하는 방법 (fix y axis scale)

(3) 복수의 막대 그래프 간에 y 축의 이름을 공유하는 방법 (share y axis label)

(4) 복수의 하위 그래프 간 여백을 작게 하여 밀착해서 그리는 방법 (plots in tight layout)


을 소개하겠습니다. 


그리고 마지막에는 복수의 옆으로 누운 막대 그래프 (multiple horizontal bar plots) 를 그리는 방법을 소개하겠습니다. 


먼저 예제로 사용할 간단한 DataFrame을 만들어보겠습니다. 



import numpy as np

import pandas as pd

import matplotlib.pyplot as plt


# make a sample DataFrame

grp = ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c']

col = ['x1', 'x2', 'x3'] * 3

val = [3.5, 4.2, 2.9, 0.5, 0.2, 0.3, 1.5, 2.5, 2.6]


df = pd.DataFrame({'grp': grp, 

                  'col': col, 

                  'val': val})


df

grpcolval
0ax13.5
1ax24.2
2ax32.9
3bx10.5
4bx20.2
5bx30.3
6cx11.5
7cx22.5
8cx32.6

 




  1. plt.subplot() 으로 복수의 막대 그래프 그리기


(1-1) (행 1개, 열 3개) 로 구성된 복수의 하위 막대 그래프 그리기 

        (multiple subplots of bar plots using plt.subplot())


plt.subplot(nrow, ncol, position) 의 형태로 행과 열의 위치에 여러개의 하위 그래프를 그릴 수 있습니다. 


아래의 예제에서는 고쳤으면 하는 3가지 문제점이 보이네요. 

첫째 문제는 Y 축의 단위(y axis scale)가 서로 다르다 보니 비교를 하기가 힘듭니다. 

둘째 문제는 X축과 Y축의 이름(label)과 단위 눈금(ticks)이 반복해서 나타나서 지저분해 보입니다. 

셋째 문제는 복수의 하위 그래프 간 간격이 떨어져 있어서 좀 작게 보입니다. 


아래에 차례대로 이들 문제를 해결해 보겠습니다. 



# (1-1) multiple bar plots with different y axis scale

plt.rcParams['figure.figsize'] = [12, 6]


for i, grp in enumerate(['a', 'b', 'c']):

    df_i = df[df['grp'] == grp]

    plt.subplot(1, 3, i+1)

    plt.bar(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    plt.title('Group: %s' %grp, fontsize=18)

    plt.xlabel('X variable', fontsize=14)

    plt.ylabel('Value', fontsize=14)

    plt.xticks(fontsize=12)

    plt.yticks(fontsize=12)






(1-2) 복수의 막대 그래프 간에 y 축의 단위를 고정하는 방법 (fix y axis scale)


plt.ylim(min, max) 의 형태로 y 축의 단위를 설정 또는 고정 (set/ fix y axis scale) 할 수 있습니다. 



 # (1-2) Set fixed y axis scale and Share it together

plt.rcParams['figure.figsize'] = [12, 6]

max_val = np.ceil(max(df['val']))


for i, grp in enumerate(['a', 'b', 'c']):

    df_i = df[df['grp'] == grp]

    plt.subplot(1, 3, i+1)

    plt.bar(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    plt.title('Group: %s' %grp, fontsize=18)

    plt.xlabel('X variable', fontsize=14)

    plt.ylabel('Value', fontsize=14)

    plt.xticks(fontsize=12)

    plt.yticks(fontsize=12)

    # set fixed y axis scale

    plt.ylim(0, max_val)





(1-3) 복수의 막대 그래프 간에  X, Y 축의 이름을 공유하는 방법 (share X and Y axis label)


if 조건문을 사용하여 X축의 이름(X label)은 중간 위치 (index = 1)의 하위 그래프만 나타나게 하고, Y축의 이름(Y label)은 첫번째 그래프(index = 0) 에만 나타나게 하면 X축과 Y축의 이름을 서로 공유한 것과 같은 효과를 낼 수 있습니다. 



# (1-3) Display only 1 X and Y label

plt.rcParams['figure.figsize'] = [12, 6]

max_val = np.ceil(max(df['val']))


for i, grp in enumerate(['a', 'b', 'c']):

    df_i = df[df['grp'] == grp]

    plt.subplot(1, 3, i+1)

    plt.bar(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    plt.title('Group: %s' %grp, fontsize=18)

    

    # display only 1 X and Y label

    if i == 1:

        plt.xlabel('X variable', fontsize=14)

    if i == 0:

        plt.ylabel('Value', fontsize=14)

    if i != 0:

        plt.yticks([])

    

    plt.xticks(fontsize=12)

    plt.yticks(fontsize=12)

    plt.ylim(0, max_val)





(1-4) 복수의 하위 그래프 간 여백을 작게 하여 밀착해서 그리는 방법 (plots in tight layout)


plt.tight_layout() 메소드를 이용하여 복수의 하위 그래프 간 여백 간격을 좁게하여 밀집된 형태로 좀더 크게 복수의 그래프를 그릴 수 있습니다. 



# (1-4) Display multiple plots in Tight Layout

plt.rcParams['figure.figsize'] = [12, 6]

max_val = np.ceil(max(df['val']))


for i, grp in enumerate(['a', 'b', 'c']):

    df_i = df[df['grp'] == grp]

    plt.subplot(1, 3, i+1)

    plt.bar(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    plt.title('Group: %s' %grp, fontsize=18)

    

    # display only 1 X and Y label

    if i == 1:

        plt.xlabel('X variable', fontsize=14)

    if i == 0:

        plt.ylabel('Value', fontsize=14)

    if i != 0:

        plt.yticks([])

    

    plt.xticks(fontsize=12)

    plt.yticks(fontsize=12)

    plt.ylim(0, max_val)


# display in tight layout

plt.tight_layout()





  2. plt.subplots() 로 복수의 막대 그래프 그리기


plt.subplots() 는 위의 plt.subplot() 보다 좀더 적은 코드로 깔끔하게 복수의 하위 막대그래프를 그릴 수 있습니다. 

  • (nrows, ncols) 로 하위 그래프를 그릴 행과 열을 지정해줍니다. 
  • sharey=True 로 y 축 공유, sharex=True 로 복수 그래프 간 x 축을 공유할 수 있습니다. (편리!)
  • if 조건문과 함께 사용해서 ax.set_ylabel(), ax.set_xlabel() 로 y축과 x축의 이름을 하나만 나타나게 하였습니다. 
  • plt.tight_layout() 로 복수의 하위 그래프 간 여백을 좁게 해서 그래프를 그렸습니다. 


# (2-1) Multiple bar plots

# (2-2) Use fixed y axis scale

# (2-3) Display only 1 X and Y label

# (2-4) Display multiple plots in Tight Layout

fig, axes = plt.subplots(nrows=1

                         , ncols=3

                         , sharey=True

                         , figsize=(12,6))


grp = ['a', 'b', 'c']


for i, ax in enumerate(axes):

    df_i = df[df['grp'] == grp[i]]

    ax.bar(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    ax.set_title("Group: {grp}".format(grp=grp[i]), fontsize=18)

    if i == 0:

        ax.set_ylabel("Value", fontsize=14)

    if i == 1:

        ax.set_xlabel("X variable", fontsize=14)

        

plt.tight_layout()





  3. 복수의 옆으로 누운 막대 그래프 (multiple horizontal bar plot) 그리기


ax.barh() 를 사용하여 옆으로 누운 막대 그래프 (horizontal bar plot)을 그렸으며, 복수개의 하위 그래프 그리는 방법은 2번에서 소개한 plt.subplots() 함수를 차용하였습니다. 


이때 옆으로 누운 막대 그래프이기 때문에, 가독성을 높이기 위해서 그룹의 이름을 제목(title)이 아니라 Y 축 이름(y label) 에 표시를 하였습니다. 



# Horizontal Multiple Bar Plots using plt.subplots()

fig, axes = plt.subplots(nrows=3

                         , ncols=1

                         , sharex=True

                         , figsize=(8,10))


grp = ['a', 'b', 'c']


for i, ax in enumerate(axes):

    df_i = df[df['grp'] == grp[i]]

    ax.barh(df_i['col'], df_i['val'], color='blue', alpha=0.5)

    #ax.set_title("Group: {grp}".format(grp=grp[i]), fontsize=18)

    ax.set_ylabel("Group: {grp}".format(grp=grp[i]), fontsize=18)

    if i == 2:

        ax.set_xlabel("Value", fontsize=14)

        

plt.tight_layout()


 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



Posted by R Friend R_Friend

댓글을 달아 주세요

이번 포스팅에서는 선형회귀모형에 대한 각 관측치별 변수별 기여도 분석 (each variable contribution per each observations)에 대해서 소개하겠습니다. 


변수 중요도 (variable importance, feature importance)가 전체 관측치를 사용해 적합한 모델 단위의 변수별 (상대적) 중요도를 나타내는 것이라면, 이번 포스팅에서 소개하려는 관측치별 변수별 기여도(민감도)는 개별 관측치 단위에서 한개의 칼럼이 모델 예측치에 얼마나 기여를 하는지를 분석해보는 것입니다. 


선형회귀 모형을 예로 들면, 변수 중요도는 회귀모형의 회귀 계수라고 할 수 있겠구요, 관측치별 변수별 기여도는 특정 관측치의 특정 칼럼값만 그대로 사용하고 나머지 변수값에는 '0'을 대입해서 나온 예측치라고 할 수 있겠습니다. 변수 중요도가 Global 하게 적용되는 model weights 라고 한다면, 관측치별 변수별 기여도는 specific variable's weight * value 라고 할 수 있겠습니다. 




변수 중요도를 분석했으면 됐지, 왜 관측치별 변수별 기여도 분석을 할까 궁금할 수도 있을 텐데요, 관측치별 변수별 기여도 분석은 특정 관측치별로 개별적으로 어떤 변수가 예측치에 크게 영향을 미쳤는지 파악하기 위해서 사용합니다. (동어반복인가요? ^^;) 


모델의 변수별 가중치(high, low)와 각 관측치별 변수별 값(high, low)의 조합별로 아래와 같이 관측치별 변수별 예측치에 대한 기여도가 달라지게 됩니다. 가령, 관측치별 변수별 예측치에 대한 기여도가 높으려면 모델의 가중치(중요도)도 높아야 하고 동시에 개별 관측치의 해당 변수의 관측값도 역시 높아야 합니다. 



관측치별 변수별 기여도 분석은 복잡하고 어려운 이론에 기반을 둔 분석이라기 보다는 단순한 산수를 반복 연산 프로그래밍으로 계산하는 것이므로 아래의 예를 따라가다 보면 금방 이해할 수 있을 것이라고 생각합니다. 



예를 들어보기 위해 공개된 전복(abalone) 데이터를 사용하여 전체 무게(whole weight)를 예측하는 선형회귀모형을 적합하고, 관측치별로 각 변수별 예측치에 기여한 정도를 분석해보겠습니다. 



  1. 선형회귀모형에 대한 관측치별 변수별 기여도(민감도) 분석 

    (Sensitivity analysis for linear regression model)



(1) abalone dataset 을 pandas DataFrame으로 불러오기



import numpy as np

import pandas as pd


url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data'

abalone = pd.read_csv(url

                      , sep=','

                      , header=None

                      , names=['sex', 'length', 'diameter', 'height', 

                               'whole_weight', 'shucked_weight', 'viscera_weight',

                               'shell_weight', 'rings']

                     , index_col=None)


abalone.head()

[Out]:

sexlengthdiameterheightwhole_weightshucked_weightviscera_weightshell_weightrings
0M0.4550.3650.0950.51400.22450.10100.15015
1M0.3500.2650.0900.22550.09950.04850.0707
2F0.5300.4200.1350.67700.25650.14150.2109
3M0.4400.3650.1250.51600.21550.11400.15510
4I0.3300.2550.0800.20500.08950.03950.0557




(2) X, y 변수 데이터셋 생성 (creating X and y dataset)


예측하려는 목표변수 y 로는 '전체 무게(whole weight)' 변수를 사용하겠으며, 설명변수 X 에는 'sex', 'length', 'diameter', 'height', 'shell_weight', 'rings' 의 6개 변수를 사용하겠습니다. 이중에서 'sex' 변수는 범주형 변수이므로 가변수(dummy variable)로 변환하였습니다. 



# transformation of categorical variable to dummy variable

abalone['sex'].unique()

[Out]: array(['M', 'F', 'I'], dtype=object)


abalone['sex_m'] = np.where(abalone['sex'] == 'M', 1, 0)

abalone['sex_f'] = np.where(abalone['sex'] == 'F', 1, 0)


# get X variables

X = abalone[["sex_m", "sex_f", "length", "diameter", "height", "shell_weight", "rings"]]


import statsmodels.api as sm

X = sm.add_constant(X) # add a constant to model

print(X)


[Out]:
Index(['const', 'sex_m', 'sex_f', 'length', 'diameter', 'height',
       'shell_weight', 'rings'],
      dtype='object')

      const  sex_m  sex_f  length  diameter  height  shell_weight  rings
0       1.0      1      0   0.455     0.365   0.095        0.1500     15
1       1.0      1      0   0.350     0.265   0.090        0.0700      7
2       1.0      0      1   0.530     0.420   0.135        0.2100      9
3       1.0      1      0   0.440     0.365   0.125        0.1550     10
4       1.0      0      0   0.330     0.255   0.080        0.0550      7
...     ...    ...    ...     ...       ...     ...           ...    ...
4172    1.0      0      1   0.565     0.450   0.165        0.2490     11
4173    1.0      1      0   0.590     0.440   0.135        0.2605     10
4174    1.0      1      0   0.600     0.475   0.205        0.3080      9
4175    1.0      0      1   0.625     0.485   0.150        0.2960     10
4176    1.0      1      0   0.710     0.555   0.195        0.4950     12

[4177 rows x 8 columns]


# get y value

y = abalone["whole_weight"]

 



Train:Test = 8:2 의 비율로 데이터셋을 분할 (Split train and test set)하겠습니다. 



# train, test set split

from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(X, 

                                                    y, 

                                                    test_size=0.2, 

                                                    random_state=2004)

print('Shape of X_train:', X_train.shape

print('Shape of X_test:', X_test.shape

print('Shape of y_train:', y_train.shape

print('Shape of y_test:', y_test.shape)

[Out]:

Shape of X_train: (3341, 8) Shape of X_test: (836, 8) Shape of y_train: (3341,) Shape of y_test: (836,)





(3) 선형회귀모형 적합 (fitting linear regression model)


이번 포스팅이 선형회귀모형에 대해서 설명하는 것이 목적이 아니기 때문에 회귀모형을 적합하는데 필요한 가정사항 진단 및 조치생략하고, 그냥 statsmodels.api 라이브러리를 이용해서 회귀모델을 적합해서 바로 민감도 분석(Sensitivity analysis)으로 넘어가겠습니다


이번 포스팅의 주제인 '관측치별 변수별 기여도 분석'에서 사용하는 모델은 어떤 알고리즘도 전부 가능하므로 개별 관측치별 변수별 영향력을 해석을 하는데 유용하게 사용할 수 있습니다. (가령, 블랙박스 모형인 Random Forest, Deep Learning 등도 가능)



# multivariate linear regression model

import statsmodels.api as sm


lin_reg = sm.OLS(y_train, X_train).fit()


lin_reg.summary()

OLS Regression Results
Dep. Variable:whole_weightR-squared:0.942
Model:OLSAdj. R-squared:0.942
Method:Least SquaresF-statistic:7738.
Date:Fri, 17 Jan 2020Prob (F-statistic):0.00
Time:20:06:12Log-Likelihood:2375.3
No. Observations:3341AIC:-4735.
Df Residuals:3333BIC:-4686.
Df Model:7
Covariance Type:nonrobust
coefstd errtP>|t|[0.0250.975]
const-0.36090.015-23.7950.000-0.391-0.331
sex_m0.03490.0066.0390.0000.0240.046
sex_f0.02170.0063.4930.0000.0100.034
length1.25390.10711.7240.0001.0441.464
diameter0.07490.1350.5540.580-0.1900.340
height0.38800.0884.4100.0000.2160.561
shell_weight2.43840.03864.8020.0002.3652.512
rings-0.01540.001-18.4230.000-0.017-0.014
Omnibus:698.165Durbin-Watson:1.978
Prob(Omnibus):0.000Jarque-Bera (JB):4041.763
Skew:0.866Prob(JB):0.00
Kurtosis:8.102Cond. No.866.


# prediction

predicted = lin_reg.predict(X_test)

actual = y_test


act_pred_df = pd.DataFrame({'actual': actual

                            , 'predicted': predicted

                            , 'error': actual - predicted})


act_pred_df.head()

[Out]:

actualpredictederror
34730.0455-0.0947030.140203
35230.09700.0206040.076396
18620.51850.690349-0.171849
29661.48201.3589500.123050
6590.95851.137433-0.178933



# Scatter Plot: Actual vs. Predicted

import matplotlib.pyplot as plt


plt.plot(act_pred_df['actual'], act_pred_df['predicted'], 'o')

plt.xlabel('actual', fontsize=14)

plt.ylabel('predicted', fontsize=14)

plt.show()


# RMSE (Root Mean Squared Error)

from sklearn.metrics import mean_squared_error

from math import sqrt


rmse = sqrt(mean_squared_error(actual, predicted))

rmse

[Out]: 0.11099248621173345





(4) 관측치별 변수별 예측모델 결과에 대한 기여도 분석 (contribution per each variables from specific observation)


아래 예에서는 전체 836개의 test set 관측치 중에서 '1번 관측치 (1st observation)' 의 8개 변수별 기여도를 분석해보겠습니다. 



X_test.shape

[Out]: (836, 8)


# get 1st observation's value as an example

X_i = X_test.iloc[0, :]

X_i

[Out]:

const           1.000
sex_m           0.000
sex_f           0.000
length          0.210
diameter        0.150
height          0.055
shell_weight    0.013
rings           4.000
Name: 3473, dtype: float64




관측치별 변수별 기여도(민감도, variable's contribution & sensitivity) 분석의 핵심 개념은 전체 데이터를 사용해서 적합된 모델에 특정 관측치의 변수별 값을 변수별로 순서대로 돌아가면서 해당 변수 측정값은 그대로 사용하고 나머지 변수들의 값은 '0'으로 대체해서 예측을 해보는 것입니다. 아래 코드의 for i, j in enumerate(X_i): X_mat[i, i] = j 부분을 유심히 살펴보시기 바랍니다. 



# all zeros matrix with shape of [col_num, col_num]

X_mat = np.zeros(shape=[X_i.shape[0], X_i.shape[0]])

X_mat

[Out]:
array([[0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.]])


# fill only 1 variable's value and leave '0' for the others

for i, j in enumerate(X_i):

    X_mat[i, i] = j


X_mat

[Out]:
array([[1.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.21 , 0.   , 0.   , 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.15 , 0.   , 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.   , 0.055, 0.   , 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.013, 0.   ],
       [0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 0.   , 4.   ]])




바로 위에서 만든 X_mat 행렬 (1번 관측치의 각 변수별로 하나씩 실제 값을 사용하고, 나머지는 '0'으로 대체)을 사용해서 (3)에서 적합한 선형회귀모형으로 y값을 예측(lin_reg.predict(X_mat))을 하면 우리가 원하는 '1번 관측치의 개별 변수별 y값 예측에 대한 기여도'를 구할 수 있습니다. 


개별 변수별 y 예측값에 대한 기여도를 기준으로 내림차순 정렬해서 DataFrame을 만들고, 가로로 누운 막대그래프도 그려보았습니다. 


# sensitivity analysis

sensitivity_df = pd.DataFrame({'x': X_test.iloc[0, :]

                               , 'contribution_x': lin_reg.predict(X_mat)}).\

                 sort_values(by='contribution_x', ascending=False)


sensitivity_df

[Out]:

xcontribution_x
length0.2100.263315
shell_weight0.0130.031699
height0.0550.021341
diameter0.1500.011237
sex_m0.0000.000000
sex_f0.0000.000000
rings4.000-0.061437
const1.000-0.360857



horizontal bar plot by column's contribution

sensitivity_df['contribution_x'].plot(kind='barh', figsize=(10, 5))

plt.title('Sensitivity Analysis', fontsize=16)

plt.xlabel('Contribution', fontsize=16)

plt.ylabel('Variable', fontsize=16)

plt.yticks(fontsize=14)

plt.show()


물론, 당연하게 관측치별 변수별 기여도 (민감도) 분석에서 나온 결과를 전부 다 합치면 애초의 모형에 해당 관측치의 전체 변수별 값을 넣어서 예측한 값과 동일한 결과가 나옵니다. 



# result from sum of contribution analysis

sum(sensitivity_df['contribution_x'])

[Out]: -0.09470251191012563


# result from linear regression model's prediction

lin_reg.predict(X_test.iloc[0, :].to_numpy())

[Out]: array([-0.09470251])

 




(5) 관측치별 변수별 예측 기여도 (민감도) 분석을 위한 사용자 정의 함수


관측치별 변수별 기여도 분석 결과를 --> pandas DataFrame으로 저장하고, --> 기여도별로 정렬된 값을 기준으로 옆으로 누운 막대그래프를 그려주는 사용자 정의함수를 만들어보겠습니다. 



# UDF for contribution(sensitivity) analysis per each variables

def sensitivity_analysis(model, X, idx, bar_plot_yn):

    

    import numpy as np

    import pandas as pd

    import matplotlib.pyplot as plt

    import statsmodels.api as sm

    pd.options.mode.chained_assignment = None

    

    # get one object's X values

    X_i = X.iloc[idx, :]

    

    # make a matrix with zeros with shape of [num_cols, num_cols]

    X_mat = np.zeros(shape=[X_i.shape[0], X_i.shape[0]])

    

    # fil X_mat with values from one by one columns, leaving the ohters zeros

    for i, j in enumerate(X_i):

        X_mat[i, i] = j

    

    # data frame with contribution of each X columns in descending order

    sensitivity_df = pd.DataFrame({'idx': idx

                                   , 'x': X_i

                                   , 'contribution_x': model.predict(X_mat)}).\

                    sort_values(by='contribution_x', ascending=True)

    

    # if bar_plot_yn == True then display it

    col_n = X_i.shape[0]

    if bar_plot_yn == True:

        sensitivity_df['contribution_x'].plot(kind='barh', figsize=(10, 0.7*col_n))

        plt.title('Sensitivity Analysis', fontsize=18)

        plt.xlabel('Contribution', fontsize=16)

        plt.ylabel('Variable', fontsize=16)

        plt.yticks(fontsize=14)

        plt.show()

    

    return sensitivity_df



# check UDF

sensitivity_df = sensitivity_analysis(model=lin_reg, X=X_test, idx=0, bar_plot_yn=True)

sensitivity_df




아래는 위에서 정의한 sensitivity_analysis() 사용자 정의 함수에서 bar_plot_yn=False 로 설정을 해서 옆으로 누운 막대그래프는 그리지 말고 기여도 분석 결과 DataFrame만 반환하라고 한 경우입니다. 



# without bar plot (bar_plot_yn=False)

sensitivity_df = sensitivity_analysis(model=lin_reg, X=X_test, idx=0, bar_plot_yn=False)

sensitivity_df

[Out]:

idxxcontribution_x
length00.2100.263315
shell_weight00.0130.031699
height00.0550.021341
diameter00.1500.011237
sex_m00.0000.000000
sex_f00.0000.000000
rings04.000-0.061437
const01.000-0.360857





(6) 다수의 관측치에 대해 '개별 관측치별 변수별 예측 기여도 분석'


위에서 부터 10개의 관측치를 선별해서, 개별 관측치별 각 변수별로 위의 (5)번에서 정의한 sensitivity_analysis() 사용자정의함수와 for loop 반복문을 사용해서 변수 기여도를 분석해보겠습니다. (단, 변수 기여도 막대 그래프는 생략)



# calculate sensitivity of each columns of the first 10 objects using for loop


# blank DataFrame to save the sensitivity results together

sensitivity_df_all = pd.DataFrame()

to_idx = 10


for idx in range(0, to_idx):

    sensitivity_df_idx = sensitivity_analysis(model=lin_reg

                                              , X=X_test

                                              , idx=idx

                                              , bar_plot_yn=False)

    

    sensitivity_df_all = pd.concat([sensitivity_df_all, sensitivity_df_idx], axis=0)

    

    print("[STATUS]", idx+1, "/", to_idx, "(", 100*(idx+1)/to_idx, "%) is completed...")


[STATUS] 1 / 10 ( 10.0 %) is completed...
[STATUS] 2 / 10 ( 20.0 %) is completed...
[STATUS] 3 / 10 ( 30.0 %) is completed...
[STATUS] 4 / 10 ( 40.0 %) is completed...
[STATUS] 5 / 10 ( 50.0 %) is completed...
[STATUS] 6 / 10 ( 60.0 %) is completed...
[STATUS] 7 / 10 ( 70.0 %) is completed...
[STATUS] 8 / 10 ( 80.0 %) is completed...
[STATUS] 9 / 10 ( 90.0 %) is completed...
[STATUS] 10 / 10 ( 100.0 %) is completed...

 



결과를 한번 확인해볼까요?



sensitivity_df_all[:20]

[Out]:

idxxcontribution_x
length00.21000.263315
shell_weight00.01300.031699
height00.05500.021341
diameter00.15000.011237
sex_m00.00000.000000
sex_f00.00000.000000
rings04.0000-0.061437
const01.0000-0.360857
length10.26000.326009
shell_weight10.03050.074372
height10.07000.027161
diameter10.20500.015357
sex_m10.00000.000000
sex_f10.00000.000000
rings14.0000-0.061437
const11.0000-0.360857
length20.52000.652018
shell_weight20.18400.448668
height20.11000.042682
diameter20.41000.030713




 2. 로지스틱 회귀모형에 대한 관측치별 변수별 민감도 분석

   (Sensitivity analysis for Logistic Regression model) 


제가 서두에서 민감도분석에 어떤 모델도 가능하도고 말씀드렸습니다. 그러면 이번에는 같은 abalone 데이터셋에 대해 목표변수로 전체무게(whole weight)가 평균보다 크면 '1', 평균보다 작으면 '0' 으로 범주를 구분한 후에, 이를 이진 분류(binary classification)할 수 있는 로지스틱 회귀모형(Logistic Regression)을 적합한 후에 --> 민감도 분석을 적용해보겠습니다. 


먼저, y_cat 이라는 범주형 변수를 만들고, train/ test set으로 분할을 한 후에, 로지스틱 회귀모형(Logistic Regression)을 적합후, 이진분류를 할 수 있는 확률을 계산(확률이 0.5보다 크면 '1'로 분류)해보겠습니다. 



# make a y_category variable: if y is greater or equal to mean, then 1

y_cat = np.where(abalone["whole_weight"] >= np.mean(abalone["whole_weight"]), 1, 0)

y_cat[:20]

[Out]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])


cat_class, counts = np.unique(y_cat, return_counts=True)

dict(zip(cat_class, counts))

[Out]: {0: 2178, 1: 1999}


# train, test set split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, 

                                                    y_cat, 

                                                    test_size=0.2, 

                                                    random_state=2004)


# fitting logistic regression

import statsmodels.api as sm

pd.options.mode.chained_assignment = None


logitreg = sm.Logit(y_train, X_train)

logitreg_fit = logitreg.fit()


print(logitreg_fit.summary())

[Out]:

Optimization terminated successfully. Current function value: 0.108606 Iterations 11 Logit Regression Results ============================================================================== Dep. Variable: y No. Observations: 3341 Model: Logit Df Residuals: 3333 Method: MLE Df Model: 7 Date: Fri, 17 Jan 2020 Pseudo R-squ.: 0.8431 Time: 21:00:24 Log-Likelihood: -362.85 converged: True LL-Null: -2313.0 Covariance Type: nonrobust LLR p-value: 0.000 ============================================================================= coef std err z P>|z| [0.025 0.975] -------------------------------------------------------------------------------- const -35.3546 2.219 -15.935 0.000 -39.703 -31.006 sex_m 1.3064 0.250 5.217 0.000 0.816 1.797 sex_f 1.1418 0.258 4.420 0.000 0.635 1.648 length 36.6625 5.348 6.855 0.000 26.180 47.145 diameter 11.7960 6.160 1.915 0.055 -0.277 23.869 height 7.6179 2.011 3.789 0.000 3.677 11.559 shell_weight 38.0930 3.286 11.593 0.000 31.653 44.533 rings -0.1062 0.038 -2.777 0.005 -0.181 -0.031 =============================================================================


# prediction

test_prob_logitreg = logitreg_fit.predict(X_test)

test_prob_logitreg.head()

[Out]:
3473    9.341757e-12
3523    2.440305e-10
1862    1.147617e-02
2966    9.999843e-01
659     9.964952e-01
dtype: float64




다음으로 위의 선형회귀모형에 대한 민감도 분석 사용자정의 함수를 재활용하여 로지스틱 회귀모형에도 사용가능하도록 일부 수정해보았습니다. 


아래의 사용자 정의 함수는 로지스틱 회귀모형 적합 시 statsmodels 라이브러리를 사용한 것으로 가정하고 작성하였습니다. 만약 로지스틱 회귀모형의 model 적합에 from sklearn.linear_model import LogisticRegression 의 라이브러리를 사용하였다면 '#'으로 비활성화해놓은 부분을 해제하여 사용하면 됩니다. (predict_proba(X_mat)[:, 1] 의 부분이 달라서 그렇습니다)



# UDF for contribution(sensitivity) analysis per each variables

# task: "LinearReg" or "LogitReg"

def sensitivity_analysis_LinearReg_LogitReg(task, model, X, idx, bar_plot_yn):

    

    import numpy as np

    import pandas as pd

    import matplotlib.pyplot as plt

    import statsmodels.api as sm

    pd.options.mode.chained_assignment = None

    

    # get one object's X values

    X_i = X.iloc[idx, :]

    

    # make a matrix with zeros with shape of [num_cols, num_cols]

    X_mat = np.zeros(shape=[X_i.shape[0], X_i.shape[0]])

    

    # fil X_mat with values from one by one columns, leaving the ohters zeros

    for i, j in enumerate(X_i):

        X_mat[i, i] = j

        

    # data frame with contribution of each X columns in descending order

    sensitivity_df = pd.DataFrame({

        'idx': idx

        , 'task': task

        , 'x': X_i

        , 'contribution_x': model.predict(X_mat)     

    })

    

#     # ==== Remark =====

#     # if you used LogisticRegressionsklearn from sklearn.linear_model

#     # then use codes below

#     if task == "LinearReg":

#         sensitivity_df = pd.DataFrame({

#             'idx': idx

#             , 'task': task

#             , 'x': X_i

#             , 'contribution_x': model.predict(X_mat) 

#         })

        

#     elif task == "LogitReg":

#         sensitivity_df = pd.DataFrame({

#             'idx': idx

#             , 'task': task

#             , 'x': X_i

#             , 'contribution_x': model.predict_proba(X_mat)[:,1] 

#         })

#     else:

#         print('Please choose task one of "LinearReg" or "LogitReg"...')

    

    

    sensitivity_df = sensitivity_df.sort_values(by='contribution_x', ascending=True)

    

    # if bar_plot_yn == True then display it

    col_n = X_i.shape[0]

    if bar_plot_yn == True:

        sensitivity_df['contribution_x'].plot(kind='barh', figsize=(10, 0.7*col_n))

        plt.title('Sensitivity Analysis', fontsize=18)

        plt.xlabel('Contribution', fontsize=16)

        plt.ylabel('Variable', fontsize=16)

        plt.yticks(fontsize=14)

        plt.show()

    

    return sensitivity_df.sort_values(by='contribution_x', ascending=False)



# apply sensitivity analysis function on 1st observation for Logistic Regression

sensitivity_analysis_LinearReg_LogitReg(task="LogitReg"

                                        , model=logitreg_fit

                                        , X=X_test

                                        , idx=0

                                        , bar_plot_yn=True)




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 Python pandas의 Series, DataFrame에서 시계열 데이터 index 의 중복 확인 및 처리하는 방법(https://rfriend.tistory.com/500) 에 대해서 소개하였습니다. 


이번 포스팅에서는 Python pandas에서 일정한 주기의 시계열 데이터(Fixed frequency time series)를 가진 Series, DataFrame 만드는 방법을 소개하겠습니다. 



[ 시계열 데이터의 특징 ]

  • 동일한/ 고정된 간격의 날짜-시간 index (equally spaced time interval, fixed frequency)
  • 중복 없고, 빠진 것도 없는 날짜-시간 index (no redundant values or gaps)
  • 시간 순서대로 정렬 (sequential order)

(* 시계열 데이터가 반드시 동일한/고정된 간격의 날짜-시간을 가져야만 하는 것은 아님. 가령, 주가(stock price) 데이는 장이 열리는 business day에만 존재하며 공휴일은 데이터 없음)





  (1) 동일 간격의 시계열 데이터 Series 만들기 (fixed frequency time series pandas Series)



(1-1) 중간에 날짜가 비어있는 시계열 데이터 Series 만들기 (non-equally spaced time series)


먼저, 예제로 사용할 간단한 시계열 데이터 pandas Series 를 만들어보겠습니다. 의도적으로 '2019-12-04', '2019-12-08' 일의 날짜-시간 index 를 제거(drop)하여 이빨 빠진 날짜-시간 index 를 만들었습니다. 



import pandas as pd


# generate dates from 2019-12-01 to 2019-12-10

date_idx = pd.date_range('2019-12-01', periods=10)

date_idx

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04', '2019-12-05', '2019-12-06', '2019-12-07', '2019-12-08', '2019-12-09', '2019-12-10'], dtype='datetime64[ns]', freq='D')


# drop 2 dates from DatetimeIndex

date_idx = date_idx.drop(pd.DatetimeIndex(['2019-12-04', '2019-12-08']))

date_idx

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-05',
               '2019-12-06', '2019-12-07', '2019-12-09', '2019-12-10'],
              dtype='datetime64[ns]', freq=None)

# Time Series with missing dates index

series_ts_missing = pd.Series(range(len(date_idx))

                              , index=date_idx)


series_ts_missing

[Out]:
2019-12-01    0
2019-12-02    1
2019-12-03    2
2019-12-05    3
2019-12-06    4
2019-12-07    5
2019-12-09    6
2019-12-10    7
dtype: int64





(1-2) 이빨 빠진 Time Series를 동일한 간격의 시계열 데이터 pandas Series로 변환하기 

       (fixed frequency, equally spaced time interval time series)


위의 (1-1)에서 만든 Series는 '2019-12-04', '2019-12-08'일의 날짜-시간 index가 빠져있는데요, 이럴 경우 resample('D')를 이용하여 날짜-시간 index는 등간격의 날짜-시간을 채워넣고, 대신 값은 결측값 처리(missing value, NaN, Not a Number)를 해보겠습니다. 



# Create a 1 day Fixed Frequency Time Series using resample('D')

series_ts_fixed_freq = series_ts_missing.resample('D')

series_ts_fixed_freq.first()

[Out]:
2019-12-01    0.0
2019-12-02    1.0
2019-12-03    2.0
2019-12-04    NaN <---
2019-12-05    3.0
2019-12-06    4.0
2019-12-07    5.0
2019-12-08    NaN <---
2019-12-09    6.0
2019-12-10    7.0
Freq: D, dtype: float64




비어있던 '날짜-시간' index 를 등간격 '날짜-시간' index로 채우면서 값(value)에 'NaN'이 생긴 부분을 fillna(0)을 이용하여 '0'으로 채워보겠습니다. 



# fill missing value with '0'

series_ts_fixed_freq.first().fillna(0)

[Out]:
2019-12-01    0.0
2019-12-02    1.0
2019-12-03    2.0
2019-12-04    0.0 <---
2019-12-05    3.0
2019-12-06    4.0
2019-12-07    5.0
2019-12-08    0.0 <---
2019-12-09    6.0
2019-12-10    7.0
Freq: D, dtype: float64

 




이번에는 resample('10T')를 이용하여 '10분 단위의 동일 간격 날짜-시간' index의 시계열 데이터를 만들어보겠습니다. 이때도 원래의 데이터셋에 없던 '날짜-시간' index의 경우 값(value)은 결측값으로 처리되어 'NaN'으로 채워집니다. 



# resampling with 10 minutes frequency (interval)

series_ts_missing.resample('10T').first()

[Out]:

2019-12-01 00:00:00 0.0 2019-12-01 00:10:00 NaN 2019-12-01 00:20:00 NaN 2019-12-01 00:30:00 NaN 2019-12-01 00:40:00 NaN ... 2019-12-09 23:20:00 NaN 2019-12-09 23:30:00 NaN 2019-12-09 23:40:00 NaN 2019-12-09 23:50:00 NaN 2019-12-10 00:00:00 7.0 Freq: 10T, Length: 1297, dtype: float64

 





  (2) 동일 간격의 시계열 데이터 DataFrame 만들기 

       (fixed frequency time series pandas DataFrame)



(2-1) 중간에 날짜가 비어있는 시계열 데이터 DataFrame 만들기 (non-equally spaced time series DataFrame)


pd.date_range() 함수로 등간격의 10일치 날짜-시간 index를 만든 후에, drop(pd.DatetimeIndex()) 로 '2019-12-04', '2019-12-08'일을 제거하여 '이빨 빠진 날짜-시간' index를 만들었습니다. 



import pandas as pd


# generate dates from 2019-12-01 to 2019-12-10

date_idx = pd.date_range('2019-12-01', periods=10)


# drop 2 dates from DatetimeIndex

date_idx = date_idx.drop(pd.DatetimeIndex(['2019-12-04', '2019-12-08']))

date_idx

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-05',

'2019-12-06', '2019-12-07', '2019-12-09', '2019-12-10'], dtype='datetime64[ns]', freq=None)


df_ts_missing = pd.DataFrame(range(len(date_idx))

                             , columns=['col']

                             , index=date_idx)


df_ts_missing

[Out]:

col
2019-12-010
2019-12-021
2019-12-032
2019-12-053
2019-12-064
2019-12-075
2019-12-096
2019-12-107

 




(2-2) 이빨 빠진 Time Series를 동일한 간격의 시계열 데이터 pandas DataFrame으로 변환하기 

       (fixed frequency, equally spaced time interval time series pandas DataFrame)


resample('D') 를 메소드를 사용하여 '일(Day)' 동일 간격의 '날짜-시간' index를 가지는 시계열 데이터 DataFrame을 만들었습니다. 이때 원래의 데이터에 없던 '날짜-시간' index의 경우 결측값 처리되어 값(value)은 'NaN'으로 처리됩니다. 



df_ts_fixed_freq = df_ts_missing.resample('D').first()

df_ts_fixed_freq

[Out]:

col
2019-12-010.0
2019-12-021.0
2019-12-032.0
2019-12-04NaN <---
2019-12-053.0
2019-12-064.0
2019-12-075.0
2019-12-08NaN <---
2019-12-096.0
2019-12-107.0




동일 간견 시계열 데이터로 변환하는 과정에서 생긴 'NaN' 결측값 부분을 fillina(0) 메소드를 이용하여 '0'으로 대체하여 채워보겠습니다. 



# fill missing value with '0'

df_ts_fixed_freq = df_ts_fixed_freq.fillna(0)

df_ts_fixed_freq

col
2019-12-010.0
2019-12-021.0
2019-12-032.0
2019-12-040.0 <---
2019-12-053.0
2019-12-064.0
2019-12-075.0
2019-12-080.0 <---
2019-12-096.0
2019-12-107.0




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 날짜-시간 시계열 객체(date-time, Timeseries objects)를 문자열(Strings)로 변환하기, 거꾸로 문자열을 날짜-시간 시계열 객체로 변환하는 방법(https://rfriend.tistory.com/498)을 소개하였습니다. 


이번 포스팅에서는 날짜-시간 시계열 데이터(date-time time series) index로 가지는  Python pandas의 Series, DataFrame 에서 특정 날짜-시간을 indexing, slicing, selection, truncation 하는 방법을 소개하겠습니다. 


(1) pandas Series에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법

(2) pandas DataFrame에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법





  (1) pandas Series에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법


먼저, 간단한 예제로 사용하도록 2019년 11월 25일 부터 ~ 2019년 12월 4일까지 10일 기간의 년-월-일 날짜를 index로 가지는 pands Series를 만들어보겠습니다. 


pandas.date_range(시작날짜, periods=생성할 날짜-시간 개수)  함수를 사용하여 날짜-시간 데이터를 생성하였으며, 이를 index로 하여 pandas Series를 만들었습니다. 



import pandas as pd

from datetime import datetime


# DatetimeIndex

ts_days_idx = pd.date_range('2019-11-25', periods=10)

ts_days_idx

[Out]:

DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28', '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04'], dtype='datetime64[ns]', freq='D')



# Series with time series index

series_ts = pd.Series(range(len(ts_days_idx))

                      , index=ts_days_idx)


series_ts

[Out]:
2019-11-25    0
2019-11-26    1
2019-11-27    2
2019-11-28    3
2019-11-29    4
2019-11-30    5
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64



series_ts.index

[Out]: 
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')


series_ts.index[6]

[Out]: Timestamp('2019-12-01 00:00:00', freq='D')




참고로, 아례의 예처럼 pd.date_range(start='시작 날짜-시간', end='끝 날짜-시간') 처럼 명시적으로 시작과 끝의 날짜-시간을 지정해주어도 위의 perieds를 사용한 예와 동일한 결과를 얻을 수 있습니다. 



import pandas as pd


pd.date_range(start='2019-11-25', end='2019-12-04')

[Out]:
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')




참고로 하나더 소개하자면요, pandas.date_range('시작날짜-시간', period=생성할 날짜-시간 개수, freq='주기 단위') 에서 freq 옵션을 통해서 'S' 1초 단위, '10S' 10초 단위, 'H' 1시간 단위, 'D' 1일 단위, 'M' 1달 단위(월 말일 기준), 'Y' 1년 단위 (년 말일 기준) 등으로 날짜-시간 시계열 데이터 생성 주기를 설정할 수 있습니다. 매우 편하지요?!


< 1초 단위로 날짜-시간 데이터 10개를 생성한 예 >


# 10 timeseries data points by Second(freq='S')

pd.date_range('2019-11-25 00:00:00', periods=10, freq='S')

[Out]: 
DatetimeIndex(['2019-11-25 00:00:00', '2019-11-25 00:00:01',
               '2019-11-25 00:00:02', '2019-11-25 00:00:03',
               '2019-11-25 00:00:04', '2019-11-25 00:00:05',
               '2019-11-25 00:00:06', '2019-11-25 00:00:07',
               '2019-11-25 00:00:08', '2019-11-25 00:00:09'],
              dtype='datetime64[ns]', freq='S')



< 10초 단위로 날짜-시간 데이터 10개를 생성한 예 >


# 10 timeseries data points by 10 Seconds (freq='10S')

pd.date_range('2019-11-25 00:00:00', periods=10, freq='10S')

[Out]:

DatetimeIndex(['2019-11-25 00:00:00', '2019-11-25 00:00:10', '2019-11-25 00:00:20', '2019-11-25 00:00:30', '2019-11-25 00:00:40', '2019-11-25 00:00:50', '2019-11-25 00:01:00', '2019-11-25 00:01:10', '2019-11-25 00:01:20', '2019-11-25 00:01:30'], dtype='datetime64[ns]', freq='10S')

 



(1-1) 시계열데이터를 index로 가지는 pandas Series에서 특정 날짜-시간 데이터 indexing 하기


먼저 위에서 생성한 series_ts 라는 이름의 시간 순서대로 정렬되어 있는 Series 에서 7번째에 위치한 '2019-12-01' 의 값 '6'을 indexing 해보겠습니다. 


(a), (b)와 같이 위치(position)를 가지고 인덱싱할 수 있습니다. 

또한, (c), (d)와 같이 날짜-시간 문자열(String)을 가지고도 인덱싱(indexing)을 할 수 있습니다. 

(e) 처럼 datetime.datetime(year, month, day) 객체를 사용해서도 인덱싱할 수 있습니다. 



import pandas as pd

from datetime import datetime


# (a) indexing with index number

series_ts[6]

[Out]: 6


# (b) indexing with index number using iloc

series_ts.iloc[6]

[Out]: 6


# (c) indexing with string ['year-month-day']

series_ts['2019-12-01']

[Out]: 6


# (d) indexing with string ['month/day/year']

series_ts['12/01/2019']

[Out]: 6


# (f) indexing with datetime.datetime(year, month, day)

series_ts[datetime(2019, 12, 1)]

[Out]: 6





(1-2) 시계열데이터를 index로 가지는 pandas Series에서 날짜-시간 데이터 Slicing 하기


아래는 '2019-12-01' 일 이후의 값을 모두 slicing 해오는 5가지 방법입니다. 

(a), (b)는 위치(position):위치(position)을 이용하여 날짜를 index로 가지는 Series를 slicing을 하였습니다. 

(c), (d)는 '년-월-일':'년-월-일' 혹은 '월/일/년':'월/일/년' 문자열(string)을 이용하여 slicing을 하였습니다. 

(e)는 datetime.datetime(년, 월, 일):datetime.datetime(년, 월, 일) 을 이용하여 slicing을 하였습니다. 



import pandas as pd

from datetime import datetime


# (a) slicing with position

series_ts[6:]

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64


# (b) slicing with position using iloc

series_ts.iloc[6:]

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (c) slicing with string

series_ts['2019-12-01':'2019-12-10']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (d) slicing with string

series_ts['12/01/2019':'12/10/2019']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (e) slicing with datetime

series_ts[datetime(2019, 12, 1):datetime(2019, 12, 10)]

[Out]:

2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64




(1-3) 시계열데이터를 index로 가지는 pandas Series 에서 날짜-시간 데이터 Selection 하기


'날짜-시간' 문자열(String)을 이용하여 특정 '년', '월'의 모든 데이터를 선택할 수도 있습니다. 꽤 편리하고 재미있는 기능입니다. 


< '2019'년 모든 데이터 선택하기 예 >


# selection with year string

series_ts['2019']

[Out]:

2019-11-25 0 2019-11-26 1 2019-11-27 2 2019-11-28 3 2019-11-29 4 2019-11-30 5 2019-12-01 6 2019-12-02 7 2019-12-03 8 2019-12-04 9 Freq: D, dtype: int64

 



< '2019년 12월' 모든 데이터 선택하기 예 >


# selection with year-month string

series_ts['2019-12']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

 




(1-4) 시계열 데이터를 index로 가지는 pandas Series에서 날짜-시간 데이터 잘라내기 (Truncate)


truncate() methods를 사용하면 잘라내기(truncation)를 할 수 있습니다. before, after 옵션으로 잘라내기하는 범위 기간을 설정할 수 있는데요, 해당 날짜 포함 여부를 유심히 살펴보기 바랍니다. 


< '2019년 12월 1일' 이전(before) 모든 데이터 잘라내기 예 >

('2019년 11월 30일'까지의 모든 데이터 삭제하며, '2019-12-01'일 데이터는 남아 있음)


# truncate before

series_ts.truncate(before='2019-12-01')

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

 



< '2019년 11월 30일' 이후(after) 모든 데이터 잘라내기 예 >

(''2019년 12월 1일' 부터의 모든 데이터 삭제하며, '2019-11-30'일 데이터는 남아 있음)


# truncate after

series_ts.truncate(after='2019-11-30')

[Out]:
2019-11-25    0
2019-11-26    1
2019-11-27    2
2019-11-28    3
2019-11-29    4
2019-11-30    5
Freq: D, dtype: int64

 





  (2) pandas DataFrame에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법


위의 (1)번에서 소개했던 pandas Series의 시계열 데이터 indexing, slicing, selection, truncation 방법을 동일하게 pandas DataFrame에도 사용할 수 있습니다.  


년-월-일 날짜를 index로 가지는 간단한 pandas DataFrame 예제를 만들어보겠습니다. 



import pandas as pd

from datetime import datetime


# DatetimeIndex

ts_days_idx = pd.date_range('2019-11-25', periods=10)

ts_days_idx

[Out]:
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')


# DataFrame with DatetimeIndex

df_ts = pd.DataFrame(range(len(ts_days_idx))

                     , columns=['col']

                     , index=ts_days_idx)


df_ts

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 




(2-1) 시계열데이터를 index로 가지는 pandas DataFrame에서 특정 날짜-시간 데이터 indexing 하기


위의 (1-1) Series indexing과 거의 유사한데요, DataFrame에서는 df_ts[6], df_ts[datetime(2019, 12, 1)] 의 두가지 방법은 KeyError 가 발생해서 사용할 수 없구요, 아래의 3가지 방법만 indexing에 사용 가능합니다. 


(a) iloc[integer] 메소드를 사용하여 위치(position) 로 indexing 하기

(b), (c) loc['label'] 메소드를 사용하여 이름('label')로 indexing 하기



# (a) indexing with index position integer using iloc[]

df_ts.iloc[6]

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64


# (b) indexing with index labels ['year-month-day']

df_ts.loc['2019-12-01']

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64


# (c) indexing with index labels ['month/day/year']

df_ts.loc['12/01/2019']

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64





(2-2) 시계열데이터를 index로 가지는 pandas DataFrame에서 날짜-시간 데이터 Slicing 하기


아래는 '2019-12-01' 일 이후의 값을 모두 slicing 해오는 4가지 방법입니다. 

(a) 위치(position):위치(position)을 이용하여 날짜를 index로 가지는 Series를 slicing을 하였습니다. 

(b), (c)는 loc['년-월-일']:loc['년-월-일'] 혹은 loc['월/일/년']:loc['월/일/년'] 문자열(string)을 이용하여 slicing을 하였습니다. 

(d) 는 loc[datetime.datetime(year, month, day):datetime.datetime(year, month, day)] 로 slicing을 한 예입니다. 



# (a) slicing DataFrame with position integer

df_ts[6:10]

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 


# (b) silcing using date strings 'year-month-day'

df_ts.loc['2019-12-01':'2019-12-10']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049


# (c) slicing using date strings 'month/day/year'

df_ts.loc['12/01/2019':'12/10/2019']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049


# (d) slicing using datetime objects

from datetime import datetime

df_ts.loc[datetime(2019, 12, 1):datetime(2019, 12, 10)]

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049






(2-3) 시계열데이터를 index로 가지는 pandas DataFrame 에서 날짜-시간 데이터 Selection 하기


'년', '년-월' 날짜 문자열을 df.loc['year'], df.loc['year-month'] 에 입력하면 해당 년(year), 월(month)의 모든 데이터를 선택할 수 있습니다. 


< '2019년'의 모든 데이터 선택 예 >


# selection of year '2019'

df_ts.loc['2019'] # df_ts['2019']

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305
2019-12-016
2019-12-027
2019-12-038
2019-12-049




< '2019년 12월'의 모든 데이터 선택 예 >


# selection of year-month '2019-12'

df_ts.loc['2019-12']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 




(2-4) 시계열 데이터를 index로 가지는 pandas DataFrame에서 날짜-시간 데이터 잘라내기 (Truncate)


truncate() 메소드를 사용하면 before 이전 기간의 데이터를 잘라내거나 after 이후 기간의 데이터를 잘라낼 수 있습니다. 


< '2019-12-01' 일 이전(before) 기간 데이터 잘라내기 예 >

('2019-12-01'일은 삭제되지 않고 남아 있음)


# truncate before

df_ts.truncate(before='2019-12-01') # '2019-12-01' is not removed

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 



< '2019-11-30'일 이후(after) 기간 데이터 잘라내기 예 >

('2019-11-30'일은 삭제되지 않고 남아 있음)


# truncate after

df_ts.truncate(after='2019-11-30') # '2019-11-30' is not removed

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



Posted by R Friend R_Friend

댓글을 달아 주세요

이번 포스팅에서는 Jupyter Notebook을 사용하는데 있어 자주 쓰는 것은 아니지만 한번 쓰려고 하면 방법을 찾으려고 하면 또 시간을 빼앗기곤 하는, 그래서 어디에 메모해두었다가 필요할 때 꺼내쓰기에 아기자기한 팁들을 모아보았습니다. 


(1) Jupyter Notebook cell 너비 설정하기

(2) Jupyter Notebook에서 DataFrame 칼럼 최대 너비 설정하기

(3) Jupyter Notebook에서 DataFrame 내 텍스트를 왼쪽으로 정렬하기

(4) Jupyter Notebook에서 DataFrame 소수점 자리수 설정하기

(5) Jupyter Notebook에서 matplotlib plot 기본 옵션 설정하기 (figure size, line width, color, grid)



 (1) Jupyter Notebook cell 너비 설정하기 (setting cell width in Jupyter Notebook)


아래 코드의 {width: 50% !important;} 부분의 숫자를 바꾸어주면 됩니다.  


 

from IPython.core.display import display, HTML


display(HTML("<style>.container { width: 50% !important; }</style>"))






 (2) Jupyter Notebook에서 DataFrame 칼럼 최대 너비 설정하기 

     (setting the max-width of DataFrame's column in Jupyter Notebook)




import pandas as pd

pd.set_option('display.max.colwidth', 10)


df = pd.DataFrame({'a': [100000000.0123, 20000000.54321], 

                  'b': ['abcdefghijklmnop', 'qrstuvwxyz']})


df


Out[2]:
ab
01.0000...abcdef...
12.0000...qrstuv...



pd.set_option('display.max.colwidth', 50)

df
Out[3]:
ab
01.000000e+08abcdefghijklmnop
12.000000e+07qrstuvwxyz






 (3) Jupyter Notebook에서 DataFrame 내 텍스트를 왼쪽으로 정렬하기 

     (align text of pandas DataFrame to left in Jupyter Notebook)



dfStyler = df.style.set_properties(**{'text-align': 'left'})

dfStyler.set_table_styles([dict(selector='th', 

                                props=[('text-align', 'left')])])


Out[4]:
ab
01e+08abcdefghijklmnop
12e+07qrstuvwxyz






 (4) Jupyter Notebook에서 DataFrame 소수점 자리수 설정하기

     (setting the decimal point format of pandas DataFrame in Jupyter Notebook)


아래에 예시로 지수형 표기를 숫자형 표기로 바꾸고, 소수점 2째자리까지만 나타내도록 숫자 표기 포맷을 설정해보겠습니다. 



import pandas as pd

pd.options.display.float_format = '{:.2f}'.format


df

Out[6]:
ab
0100000000.01abcdefghijklmnop
120000000.54qrstuvwxyz

 





 (5) Jupyter Notebook에서 matplotlib plot 기본 옵션 설정하기 

    (setting figure size, line width, color, grid of matplotlib plot in Jupyter Notebook)


matplotlib.pyplot 의 plt.rcParams[] 를 사용하여 그래프 크기, 선 너비, 선 색깔, 그리드 포함 여부 등을 설정할 수 있습니다. 



# matplotlib setting

import matplotlib.pylab as plt

%matplotlib inline


plt.rcParams["figure.figsize"] = (6, 5)

plt.rcParams["lines.linewidth"] = 2

plt.rcParams["lines.color"] = 'r'

plt.rcParams["axes.grid"] = True


# simple plot

x = [1, 2, 3, 4, 5]

y = [2, 3.5, 5, 8, 9]


plt.plot(x, y)

plt.show()

 




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


Posted by R Friend R_Friend

댓글을 달아 주세요

Python은 Jupyter Notebook, R은 RStudio 라고만 알고 있는 분도 계실텐데요, IRKernel을 설치해주면 Jupyter Notebook에서도 R을 사용할 수 있습니다


이번 포스팅에서는 Jupyter Notebook에서 R을 사용할 수 있도록 하는 방법을 소개하겠습니다. 

(MacOS, Anaconda, Python3.6 version 환경)


명령 프롬프트 창(prompt window, terminal) 에서 아래의 절차에 따라서 IRKernel을 설치해주시면 됩니다. 

(RStudion에서 설치를 하려고 하면 에러가 납니다. 명령 프롬프트창/ Terminal에서 진행하기 바랍니다)



  1. Jupyter Notebook 사용할 수 있도록 IRKernel 설치하기



(1) 명령 프롬프트 창(terminal)에서 'R' 을 써주고 엔터 => R을 실행합니다. 



MacBook-Pro:~ ihongdon$

MacBook-Pro:~ ihongdon$ R


R version 3.6.0 (2019-04-26) -- "Planting of a Tree"

Copyright (C) 2019 The R Foundation for Statistical Computing

Platform: x86_64-apple-darwin15.6.0 (64-bit)

 





(2) devtools 패키지를 설치합니다: install.packages('devtools')


'현재 세션에서 사용할 CRAN 미러를 선택해 주세요' 라는 메시지와 함께 콤보 박스 창이 뜨면 서버 아무거나 선택하면 됩니다. 저는 'SEOUL' 선택했습니다. 



>

> install.packages('devtools')

--- 현재 세션에서 사용할 CRAN 미러를 선택해 주세요 ---


SEOUL



경고: 저장소 https://cran.seoul.go.kr/bin/macosx/el-capitan/contrib/3.6에 대한 인덱스에 접근할 수 없습니다:

  URL 'https://cran.seoul.go.kr/bin/macosx/el-capitan/contrib/3.6/PACKAGES'를 열 수 없습니다

소스형태의 패키지 ‘devtools’(들)를 설치합니다.


URL 'https://cran.seoul.go.kr/src/contrib/devtools_2.2.1.tar.gz'을 시도합니다

Content type 'application/x-gzip' length 372273 bytes (363 KB)

==================================================

downloaded 363 KB


* installing *source* package ‘devtools’ ...

** 패키지 ‘devtools’는 성공적으로 압축해제되었고, MD5 sums 이 확인되었습니다

** using staged installation

** R

** inst

** byte-compile and prepare package for lazy loading

** help

*** installing help indices

*** copying figures

** building package indices

** installing vignettes

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation path

* DONE (devtools)


다운로드한 소스 패키지들은 다음의 위치에 있습니다

‘/private/var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T/Rtmpg1bePN/downloaded_packages’

>

 




(3) IRkernel 설치: devtools::install_github('IRkernel/IRkernel') 실행합니다. 



>

> devtools::install_github('IRkernel/IRkernel')

Downloading GitHub repo IRkernel/IRkernel@master

'/usr/local/bin/git' clone --depth 1 --no-hardlinks --recurse-submodules https://github.com/jupyter/jupyter_kernel_test.git /var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T//Rtmpg1bePN/remotes36921150b621/IRkernel-IRkernel-67592db/tests/testthat/jkt

'/var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T//Rtmpg1bePN/remotes36921150b621/IRkernel-IRkernel-67592db/tests/testthat/jkt'에 복제합니다...

remote: Enumerating objects: 12, done.

remote: Counting objects: 100% (12/12), done.

remote: Compressing objects: 100% (11/11), done.

remote: Total 12 (delta 1), reused 3 (delta 0), pack-reused 0

오브젝트 묶음 푸는 중: 100% (12/12), 완료.

'/usr/local/bin/git' clone --depth 1 --no-hardlinks --recurse-submodules https://github.com/flying-sheep/ndjson-testrunner.git /var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T//Rtmpg1bePN/remotes36921150b621/IRkernel-IRkernel-67592db/tests/testthat/njr

'/var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T//Rtmpg1bePN/remotes36921150b621/IRkernel-IRkernel-67592db/tests/testthat/njr'에 복제합니다...

remote: Enumerating objects: 10, done.

remote: Counting objects: 100% (10/10), done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 10 (delta 0), reused 6 (delta 0), pack-reused 0

오브젝트 묶음 푸는 중: 100% (10/10), 완료.

Skipping 1 packages ahead of CRAN: htmltools

   checking for file ‘/private/var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T/Rtmpg1bePN/remotes36921150b621/IRkernel✔  checking for file ‘/private/var/folders/6q/mtq6ftrj6_z4txn_zsxcfyxc0000gn/T/Rtmpg1bePN/remotes36921150b621/IRkernel-IRkernel-67592db/DESCRIPTION’

─  preparing ‘IRkernel’:

✔  checking DESCRIPTION meta-information ...

─  checking for LF line-endings in source and make files and shell scripts

─  checking for empty or unneeded directories

   Removed empty directory ‘IRkernel/example-notebooks’

─  building ‘IRkernel_1.0.2.9000.tar.gz’


* installing *source* package ‘IRkernel’ ...

** using staged installation

** R

** inst

** byte-compile and prepare package for lazy loading

** help

*** installing help indices

** building package indices

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation path

* DONE (IRkernel)

>

 




(4) IRkernel::installspec()  확인



>

> IRkernel::installspec()

[InstallKernelSpec] Installed kernelspec ir in /Users/ihongdon/Library/Jupyter/kernels/ir

>

 



만약 아래와 같은 메시지가 떴다면 이는 아마도 위의 (1), (2), (3) 절차를 "명령 프롬프트 창(Terminal)"에서 실행한 것이 아니라 "RStudio"에서 실행했기 때문일 것입니다. 


jupyter-client has to be installed but “jupyter kernelspec –version” exited with code 127.


위의 메시지가 떴다면 명령 프롬프트 창(prompt window, Terminal)을 하나 열고 위의 (1), (2), (3) 절차를 실행한 후에 (4)로 확인을 해보세요. 



Windows10 OS를 사용하는 분이라면 PATH에 아래 경로를 추가로 등록해보시기 바랍니다. 


 

 Anaconda\Lib\site-packages\jupyter_client


 C:\Users\Anaconda3\Scripts 



참고로 Windows 10, Windows 8에서 PATH 등록하는 법은 아래와 같습니다. 

[ Windows10 또는 Windows8 에서 PATH 등록 ]


  1. 시스템(제어판)’ 선택
  2. 고급 시스템 설정 링크선택(클릭)
  3. 환경변수선택 —> 시스템 변수 섹션에서 ‘PATH 환경변수선택 —> ‘편집선택 —> PATH 환경변수가 존재하지 않을 경우새로 만들기선택
  4. 시스템 변수 편집 (또는 시스템 변수)’ 창에서 PATH 환경 변수의 값을 지정 —> ‘확인선택 —> 나머지 모두 닫기





  2. Jupyter Notebook에서 R 사용해보기


R kernel 도 잘 설치가 되었으니 Jupyter Notebook에서 R을 사용해보겠습니다.  위의 R이 실행 중인 terminal 에서 'ctrl + z' 를 눌러서 빠져나옵니다. 


$ conda info -e (혹은 conda env list) 로 가상환경 목록을 확인하고, 

$ source activate [가상환경 이름] 으로 특정 가상환경으로 들어갑니다. 

(Windows OS 에서는 activate [가상환경 이름])

$ jupyter notebook 로 jupyter notebook 창을 열어줍니다. 



>

>

[1]+  Stopped                 R

MacBook-Pro:~ ihongdon$

MacBook-Pro:~ ihongdon$ conda info -e

# conda environments:

#

base                  *  /Users/ihongdon/anaconda3

py2.7_tf1.4              /Users/ihongdon/anaconda3/envs/py2.7_tf1.4

py3.5_tf1.4              /Users/ihongdon/anaconda3/envs/py3.5_tf1.4

py3.6_tf2.0              /Users/ihongdon/anaconda3/envs/py3.6_tf2.0


MacBook-Pro:~ ihongdon$

MacBook-Pro:~ ihongdon$

MacBook-Pro:~ ihongdon$ source activate py3.6_tf2.0

(py3.6_tf2.0) MacBook-Pro:~ ihongdon$

(py3.6_tf2.0) MacBook-Pro:~ ihongdon$ jupyter notebook

 




아래처럼 Jupyter Notebook 창이 뜨면 오른쪽 상단의 'New' 메뉴를 클릭하고, 여러 하위 메뉴 중 'R' 선택합니다. 





간단한 예제로 x, y 두개 변수로 구성된 R 데이터프레임을 하나 만들고, ggplot2 로 산점도를 그려보았습니다. 






다음으로 종속변수 y에 대해 설명변수 x를 사용한 선형회귀모형을 적합시켜 보았습니다. 




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)





Posted by R Friend R_Friend

댓글을 달아 주세요

이번 포스팅에서는 Python pandas DataFrame을 만들려고 할 때 "ValueError: If using all scalar values, you must pass an index" 에러 해결 방안 4가지를 소개하겠습니다.

아래의 예처럼 dictionary로 키, 값 쌍으로 된 데이터를 pandas DataFrame으로 만들려고 했을 때, 모든 값이 스칼라 값(if using all scalar values) 일 경우에 "ValueError: If using all scalar values, you must pass an index" 에러가 발생합니다. 

import pandas as pd

df = pd.DataFrame({'col_1': 1, 

                  'col_2': 2})

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-2-73d6f192ba2a> in <module>()
      1 df = pd.DataFrame({'col_1': 1, 
----> 2                   'col_2': 2})

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
    273                                  dtype=dtype, copy=copy)
    274         elif isinstance(data, dict):
--> 275             mgr = self._init_dict(data, index, columns, dtype=dtype)
    276         elif isinstance(data, ma.MaskedArray):
    277             import numpy.ma.mrecords as mrecords

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in _init_dict(self, data, index, columns, dtype)
    409             arrays = [data[k] for k in keys]
    410 
--> 411         return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
    412 
    413     def _init_ndarray(self, values, index, columns, dtype=None, copy=False):

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in _arrays_to_mgr(arrays, arr_names, index, columns, dtype)
   5494     # figure out the index, if necessary
   5495     if index is None:
-> 5496         index = extract_index(arrays)
   5497     else:
   5498         index = _ensure_index(index)

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in extract_index(data)
   5533 
   5534         if not indexes and not raw_lengths:
-> 5535             raise ValueError('If using all scalar values, you must pass'
   5536                              ' an index')
   5537 

ValueError: If using all scalar values, you must pass an index




이 에러를 해결하기 위한 4가지 방법을 차례대로 소개하겠습니다. 


 (1) 해결방안 1 : 인덱스 값을 설정해줌 (pass an index)

에러 메시지에 "you must pass an index" 라는 가이드라인대로 인덱스 값을 추가로 입력해주면 됩니다. 


# (1) pass an index

df = pd.DataFrame({'col_1': 1, 

                  'col_2': 2}

                  index = [0])


df

col_1col_2
012

 


물론 index 에 원하는 값을 입력해서 설정해줄 수 있습니다. index 에 'row_1' 이라고 해볼까요?

df = pd.DataFrame({'col_1': 1, 

                   'col_2': 2}

                  index = ['row_1'])


df

col_1col_2
row_112



 (2) 스칼라 값 대신 리스트 값을 입력 (use a list instead of scalar values)

입력하는 값(values)에 대괄호 [ ] 를 해주어서 리스트로 만들어준 값을 사전형의 값으로 사용하면 에러가 발생하지 않습니다. 

# (2) use a list instead of scalar values

df2 = pd.DataFrame({'col_1': [1]

                    'col_2': [2]})


df2

col_1col_2
012



 (3) pd.DataFrame.from_records([{'key': value}]) 를 사용해서 DataFrame 만들기

이때도 [ ] 로 해서 리스트 값을 입력해주어야 합니다. ( [ ] 빼먹으면 동일 에러 발생함)

# (3) use pd.DataFrame.from_records() with a list

df3 = pd.DataFrame.from_records([{'col_1': 1, 

                                  'col_2': 2}])


df3 

col_1col_2
012



 (4) pd.DataFrame.from_dict([{'key': value}]) 를 사용하여 DataFrame 만들기

(3)과 거의 유사한데요, from_records([]) 대신에 from_dict([]) 를 사용하였으며, 역시 [ ] 로 해서 리스트 값을 입력해주면 됩니다. 

# (4) use pd.DataFrame.from_dict([]) with a list

df4 = pd.DataFrame.from_dict([{'col_1': 1, 

                              'col_2': 2}])


df4

col_1col_2
012


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 Python의 json.dumps() 를 사용해서 JSON 포맷 데이터를 쓰거나, json.loads()를 사용해서 JSON 포맷 데이터를 python으로 읽어오는 방법(https://rfriend.tistory.com/474)을 소개하였습니다. 


이번 포스팅에서는 이어서 웹에 있는 JSON 포맷 데이터를 Python으로 읽어와서 pandas DataFrame으로 만드는 방법(How to read JSON formate data from WEB API and convert it to pandas DataFrame in python)을 소개하겠습니다. 





JSON 포맷 파일을 가져올 수 있는 사이트로 "Awesome JSON Datasets (https://github.com/jdorfman/awesome-json-datasets)" 를 예로 들어서 설명해보겠습니다. 


여러개의 JSON Datasets 이 올라가 있는데요, 이중에서 'Novel Prize' JSON 포맷 데이터(http://api.nobelprize.org/v1/prize.json)를 읽어와서 DataFrame으로 만들어보겠습니다. 




 (1) API 웹 사이트에서 JSON 포맷 자료를 Python으로 읽어오기



이제 urllib 모듈의 rulopen 함수를 사용해서 JSON 데이터가 있는 URL로 요청(request)을 보내서 URL을 열고 JSON 데이터를 읽어와서, python의 json.loads() 를 사용하여 novel_prize_json 이라 이름의 Python 객체로 만들어보겠습니다.  



# parse a JSON string using json.loads() method : returns a dictionary

import json

import urllib

import pandas as pd


# API request to the URL

import sys


if sys.version_info[0] == 3:

    from urllib.request import urlopen # for Python 3.x

else:

    from urllib import urlopen           # for Python 2.x


with urlopen("http://api.nobelprize.org/v1/prize.json") as url:

    novel_prize_json_file = url.read()




urllib 모듈의 (web open) request 메소드를 불러오 때 Python 2.x 버전에서는 from urllib import urlopen 을 사용하는 반면, Python 3.x 버전에서는 from urllib.request import urlopen 을 사용합니다. 따라서 만약 Python 3.x 사용자가 아래처럼 (Python 2.x 버전에서 사용하는) from urllib import urlopen 이라고 urlopen을 importing 하려고 하면 ImportError: cannot import name 'urlopen' 이라는 에러가 납니다. 


# ImportError: cannot import name 'urlopen' at python 3.x

from urllib import urlopen # It's only for Python 2.x. It's not working at Python 3.x


with urlopen("http://api.nobelprize.org/v1/prize.json") as url:

    novel_prize_json_file = url.read()


---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-1-81c8fae1a1fd> in <module>()
      1 # API request to the URL
----> 2 from urllib import urlopen
      3 
      4 with urlopen("http://api.nobelprize.org/v1/prize.json") as url:
      5     novel_prize_json_file = url.read()

ImportError: cannot import name 'urlopen'



다음으로, 위에서 읽어온 JSON 포맷 데이터를 Python의 json.loads() 메소드를 이용해서 decoding 해보겠습니다. 이때 decode('utf-8') 로 설정해주었습니다. 


# decoding to python object

novel_prize_json = json.loads(novel_prize_json_file.decode('utf-8'))



decoding을 할 때 'utf-8' 을 설정을 안해주니 아래처럼 TypeError 가 나네요. (TypeError: the JSON object must be str, not 'builtin_function_or_method')


# decoding TypeError. decode using decode('utf-8')

novel_prize_json = json.loads(novel_prize_json_file.decode)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-1fda68be6386> in <module>()
      1 # decoding TypeError
----> 2 novel_prize_json = json.loads(novel_prize_json_file.decode)

C:\Users\admin\Anaconda3\lib\json\__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    310     if not isinstance(s, str):
    311         raise TypeError('the JSON object must be str, not {!r}'.format(
--> 312                             s.__class__.__name__))
    313     if s.startswith(u'\ufeff'):
    314         raise JSONDecodeError("Unexpected UTF-8 BOM (decode using utf-8-sig)",

TypeError: the JSON object must be str, not 'builtin_function_or_method'




Novel Prize JSON 파일을 Python 객체로 읽어왔으니, keys() 메소드로 키를 확인해보겠습니다. 그리고 'prizes' 키의 첫번째 데이터(novel_prize_json['prizes'][0])인 물리학(Physics) 분야 노벨상 수상자 정보를 인쇄해보겠습니다. 



novel_prize_json.keys()

dict_keys(['prizes'])


novel_prize_json['prizes'][0].keys()

dict_keys(['laureates', 'year', 'overallMotivation', 'category'])


novel_prize_json['prizes'][0]

{'category': 'physics',
 'laureates': [{'firstname': 'Arthur',
   'id': '960',
   'motivation': '"for the optical tweezers and their application to biological systems"',
   'share': '2',
   'surname': 'Ashkin'},
  {'firstname': 'Gérard',
   'id': '961',
   'motivation': '"for their method of generating high-intensity, ultra-short optical pulses"',
   'share': '4',
   'surname': 'Mourou'},
  {'firstname': 'Donna',
   'id': '962',
   'motivation': '"for their method of generating high-intensity, ultra-short optical pulses"',
   'share': '4',
   'surname': 'Strickland'}],
 'overallMotivation': '"for groundbreaking inventions in the field of laser physics"', 

'year': '2018'} 




가독성을 높이기 위해서 json.dumps(obj, indent=4) 를 사용해서 4칸 들여쓰기 (indentation)을 해보겠습니다. 



print(json.dumps(novel_prize_json['prizes'][0], indent=4))

{
    "laureates": [
        {
            "share": "2",
            "id": "960",
            "surname": "Ashkin",
            "motivation": "\"for the optical tweezers and their application to biological systems\"",
            "firstname": "Arthur"
        },
        {
            "share": "4",
            "id": "961",
            "surname": "Mourou",
            "motivation": "\"for their method of generating high-intensity, ultra-short optical pulses\"",
            "firstname": "G\u00e9rard"
        },
        {
            "share": "4",
            "id": "962",
            "surname": "Strickland",
            "motivation": "\"for their method of generating high-intensity, ultra-short optical pulses\"",
            "firstname": "Donna"
        }
    ],
    "year": "2018",
    "overallMotivation": "\"for groundbreaking inventions in the field of laser physics\"",
    "category": "physics"
}

 



키(keys)를 기준으로 정렬하는 것까지 포함해서 다시 한번 프린트를 해보겠습니다. 



print(json.dumps(novel_prize_json['prizes'][0], indent=4, sort_keys=True))

{
    "category": "physics",
    "laureates": [
        {
            "firstname": "Arthur",
            "id": "960",
            "motivation": "\"for the optical tweezers and their application to biological systems\"",
            "share": "2",
            "surname": "Ashkin"
        },
        {
            "firstname": "G\u00e9rard",
            "id": "961",
            "motivation": "\"for their method of generating high-intensity, ultra-short optical pulses\"",
            "share": "4",
            "surname": "Mourou"
        },
        {
            "firstname": "Donna",
            "id": "962",
            "motivation": "\"for their method of generating high-intensity, ultra-short optical pulses\"",
            "share": "4",
            "surname": "Strickland"
        }
    ],
    "overallMotivation": "\"for groundbreaking inventions in the field of laser physics\"",
    "year": "2018"
}

 




 (2) JSON 포맷 데이터를 pandas DataFrame으로 만들기


다음으로 Python으로 불러온 JSON 포맷의 데이터 중의 일부분을 indexing하여 pandas DataFrame으로 만들어보겠습니다. 


예로, ['prizes'][0] 은 물리학(physics) 노벨상이며, ['prizes'][0]['laureates'] 로 물리학 노벨상 수상자 정보만 선별해서 pd.DataFrame() 으로 DataFrame을 만들어보겠습니다. 


novel_prize_physics = pd.DataFrame(novel_prize_json['prizes'][0]["laureates"])


novel_prize_physics

firstnameidmotivationsharesurname
0Arthur960"for the optical tweezers and their applicatio...2Ashkin
1Gérard961"for their method of generating high-intensity...4Mourou
2Donna962"for their method of generating high-intensity...4Strickland



DataFrame을 만들 때 칼럼 순서를 columns 로 지정을 해줄 수 있습니다. 


novel_prize_physics = pd.DataFrame(novel_prize_json['prizes'][0]["laureates"]

                                   columns = ['id', 'firstname', 'surname', 'share', 'motivation'])


novel_prize_physics

idfirstnamesurnamesharemotivation
0960ArthurAshkin2"for the optical tweezers and their applicatio...
1961GérardMourou4"for their method of generating high-intensity...
2962DonnaStrickland4"for their method of generating high-intensity...


많은 도움이 되었기를 바랍니다 .


다음 포스팅에서는 웹에서 XML 포맷 데이터를 Python으로 읽어와서 pandas DataFrame으로 만드는 방법을 소개하겠습니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. 



Posted by R Friend R_Friend

댓글을 달아 주세요

json.org의 JSON 소개 내용에 따르면, JSON (JavaScript Object Notation) 은 XML, YAML 과 함께 효율적으로 데이터를 저장하고 교환(exchange data)하는데 사용하는 텍스트 데이터 포맷 중의 하나입니다. JSON은 사람이 읽고 쓰기에 쉬우며, 또한 기계가 파싱하고 생성하기도에 쉽습니다. JSON은 그 이름에서 유추할 수 있듯이 JavaScript의 프로그래밍 언어의 부분에 기반하고 있으며, C-family 프로그램밍 언어 (C, C++, C#, Java, JavaScript, Perl, Python 등)의 규약을 따르고 있어서 C-family 프로그래밍 언어 간 데이터를 교환하는데 적합합니다. 

JSON은 아래의 두개의 구조로 이루어져 있습니다. 

  • 이름/값 쌍의 집합 (A collection of name/value pairs): object, record, struct, dictionary, hash table, keyed list, associative array
  • 정렬된 값의 리스트 (An ordered list of values): array, vector, list, sequence

홍길동이라는 이름의 학생에 대한 정보를 포함하고 있는 JSON 데이터 포맷의 예를 들어보겠습니다.

{

    "1.FirstName": "Gildong",
    "2.LastName": "Hong",
    "3.Age": 20,
    "4.University": "Yonsei University",
    "5.Courses": [
        {
            "Classes": [
                "Probability",
                "Generalized Linear Model",
                "Categorical Data Analysis"
            ],
            "Major": "Statistics"
        },
        {
            "Classes": [
                "Data Structure",
                "Programming",
                "Algorithms"
            ],
            "Minor": "ComputerScience"
        }
    ]
}


그러면, 이번 포스팅에서는 

(1) Python 객체를 JSON 데이터로 쓰기, 직렬화, 인코딩 (Write Python object to JSON, Serialization, Encoding)

(2) JSON 포맷 데이터를 Python 객체로 읽기, 역직렬화, 디코딩 (Read JSON to Python, Deserialization, Decoding)

하는 방법을 소개하겠습니다. 


위의 Python - JSON 간 변환 표(conversion table b/w python and JSON)에서 보는 바와 같이, python의 list, tuple 이 JSON의 array로 변환되며, JSON의 array는 pythonhon의 list로 변환됩니다. 따라서 Python의 tuple을 JSON으로 변환하면 JSON array가 되며, 이를 다시 Python으로 재변환하면 이땐 python의 tuple이 아니라 list로 변환된다는 점은 인식하고 사용하기 바랍니다. 


 (1) Python 객체를 JSON 데이터로 쓰기, 직렬화, 인코딩: json.dumps()
      (Write Python object to JSON, Serialization, Encoding)

python 객체를 JSON 데이터로 만들어서 쓰기 위해서는 파이썬의 내장 json 모듈이 필요합니다. 

 import json


아래와 같은 홍길동 이라는 학생의 정보를 담고 있는 사전형 자료(dictionary)를 json.dump()와 json.dumps() 의 두가지 방법으로 JSON 포맷 데이터로 만들어보겠습니다. 

student_data = {
    "1.FirstName": "Gildong",
    "2.LastName": "Hong",
    "3.Age": 20, 
    "4.University": "Yonsei University",
    "5.Courses": [
        {
            "Major": "Statistics", 
            "Classes": ["Probability", 
                        "Generalized Linear Model", 
                        "Categorical Data Analysis"]
        }, 
        {
            "Minor": "ComputerScience", 
            "Classes": ["Data Structure", 
                        "Programming", 
                        "Algorithms"]
        }
    ]
} 


(2-1) with open(): json.dump() 를 사용해서 JSON 포맷 데이터를 디스크에 쓰기

with open("student_file.json", "w") 로 "student_file.json" 이름의 파일을 쓰기("w") 모드로 열어놓고, json.dump(student_data, json_file) 로 직렬화해서 JSON으로 내보내고자 하는 객체 student_data를, 직렬화된 데이터가 쓰여질 파일 json_file 에 쓰기를 해주었습니다. 

import json

with open("student_file.json", "w") as json_file:

    json.dump(student_data, json_file)


그러면 아래의 화면캡쳐에서 보는 바와 같이 'student_file.json'이라는 이름의 JSON 포맷 데이터가 새로 생성되었음을 알 수 있습니다.



(2-2) json.dumps()를 사용해서 JSON 포맷 데이터를 메모리에 만들기

만약 메모리 상에 JSON 포맷 데이터를 만들어놓고 python에서 계속 작업을 하려면 json.dumps() 를 사용합니다.

import json

st_json = json.dumps(student_data)

print(st_json)

{"5.Courses": [{"Classes": ["Probability", "Generalized Linear Model", "Categorical Data Analysis"], "Major": "Statistics"}, {"Minor": "ComputerScience", "Classes": ["Data Structure", "Programming", "Algorithms"]}], "3.Age": 20, "2.LastName": "Hong", "4.University": "Yonsei University", "1.FirstName": "Gildong"}


이때 만약 json.dumps()가 아니라 json.dump() 처럼 's'를 빼먹으면 TypeError가 발생하므로 주의하세요. 

# use json.dumps() instead of json.dump()

st_json = json.dump(student_data)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-5-ac881d00bbcb> in <module>()
----> 1 st_json = json.dump(student_data)

TypeError: dump() missing 1 required positional argument: 'fp'


json.dumps()로 파이썬 객체를 직렬화해서 JSON으로 쓸 때 사람이 보기에 좀더 쉽도록 'indent = int' 로 들여쓰기(indentation) 옵션을 설정할 수 있습니다. 아래 예시는 indent=4 로 설정한건데요, 한결 보기에 가독성이 좋아졌습니다. 


import json

st_json2 = json.dumps(student_data, indent=4)

print(st_json2)

{

    "3.Age": 20,
    "5.Courses": [
        {
            "Classes": [
                "Probability",
                "Generalized Linear Model",
                "Categorical Data Analysis"
            ],
            "Major": "Statistics"
        },
        {
            "Minor": "ComputerScience",
            "Classes": [
                "Data Structure",
                "Programming",
                "Algorithms"
            ]
        }
    ],
    "1.FirstName": "Gildong",
    "4.University": "Yonsei University",
    "2.LastName": "Hong"
}


'sort_keys=True' 를 설정해주면 키(keys)를 기준으로 정렬해서 직렬화하여 내보낼 수도 있습니다. 

import json

st_json3 = json.dumps(student_data, indent=4, sort_keys=True)

print(st_json3)

{
    "1.FirstName": "Gildong",
    "2.LastName": "Hong",
    "3.Age": 20,
    "4.University": "Yonsei University",
    "5.Courses": [
        {
            "Classes": [
                "Probability",
                "Generalized Linear Model",
                "Categorical Data Analysis"
            ],
            "Major": "Statistics"
        },
        {
            "Classes": [
                "Data Structure",
                "Programming",
                "Algorithms"
            ],
            "Minor": "ComputerScience"
        }
    ]
}




 (2) JSON 포맷 데이터를 Python 객체로 읽기, 역직렬화, 디코딩: json.loads()
      (Read JSON to Python, Deserialization, Decoding)


(2-1) 디스크에 있는 JSON 포맷 데이터를 json.load()를 사용하여 Python 객체로 읽어오기 (역직렬화, 디코딩 하기)

이어서, (1)번에서 with open(): json.dump() 로 만들어놓은 JSON 포맷의 데이터 "student_file.json" 를 Python 으로 역질렬화(deserialization)해서 읽어와 보겠습니다. with open("student_file.json", "r") 로 읽기 모드("r")로 JSON파일을 열어 후에, json.load(st_json)으로 디코딩하였습니다. 

import json

with open("student_file.json", "r") as st_json:

    st_python = json.load(st_json)


st_python

{'1.FirstName': 'Gildong',
 '2.LastName': 'Hong',
 '3.Age': 20,
 '4.University': 'Yonsei University',
 '5.Courses': [{'Classes': ['Probability',
    'Generalized Linear Model',
    'Categorical Data Analysis'],
   'Major': 'Statistics'},
  {'Classes': ['Data Structure', 'Programming', 'Algorithms'],
   'Minor': 'ComputerScience'}]}


이때 json.loads() 처럼 's'를 붙이면 TypeError: the JSON object must be str, not 'TextIOWrapper'가 발생합니다. (json.loads()가 아니라 json.load() 를 사용해야 함)

# use json.load() instead of json.loads()

with open("student_json_file.json", "r") as st_json:

    st_python = json.loads(st_json)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-53-c39634419df6> in <module>()
      1 with open("student_json_file.json", "r") as st_json:
----> 2     st_python = json.loads(st_json)

C:\Users\admin\Anaconda3\lib\json\__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    310     if not isinstance(s, str):
    311         raise TypeError('the JSON object must be str, not {!r}'.format(
--> 312                             s.__class__.__name__))
    313     if s.startswith(u'\ufeff'):
    314         raise JSONDecodeError("Unexpected UTF-8 BOM (decode using utf-8-sig)",

TypeError: the JSON object must be str, not 'TextIOWrapper'



(2-2) 메모리에 있는 JSON 포맷 데이터를 json.loads()로 Python 객체로 읽기 (역직렬화, 디코딩하기)

import json

st_python2 = json.loads(st_json3)

st_python2

{'1.FirstName': 'Gildong',
 '2.LastName': 'Hong',
 '3.Age': 20,
 '4.University': 'Yonsei University',
 '5.Courses': [{'Classes': ['Probability',
    'Generalized Linear Model',
    'Categorical Data Analysis'],
   'Major': 'Statistics'},
  {'Classes': ['Data Structure', 'Programming', 'Algorithms'],
   'Minor': 'ComputerScience'}]}


이때 만약 json.loads() 대신에 's'를 빼고 json.load()를 사용하면 AttributeError: 'str' object has no attribute 'read' 가 발생하니 주의하기 바랍니다. 

# use json.loads() instead of json.load()

st_python2 = json.load(st_json3)

---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)
<ipython-input-54-9de49903fef6> in <module>()
----> 1 st_python2 = json.load(st_json3)

C:\Users\admin\Anaconda3\lib\json\__init__.py in load(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    263 
    264     """
--> 265     return loads(fp.read(),
    266         cls=cls, object_hook=object_hook,
    267         parse_float=parse_float, parse_int=parse_int,

AttributeError: 'str' object has no attribute 'read'


많은 도움이 되었기를 바랍니다. 

다음번 포스팅에서는 '웹(API)으로 부터 JSON 포맷 자료를 Python으로 읽어와서 pandas DataFrame으로 만드는 방법(https://rfriend.tistory.com/475)을 소개하겠습니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요.  :-)


Posted by R Friend R_Friend

댓글을 달아 주세요

이전 포스팅에서 사전 자료형(dictionary data type)을 만드는 방법과 기본 사용법(https://rfriend.tistory.com/333), 사전 자료형 내장함수와 메소드(https://rfriend.tistory.com/334)에 대해서 설명한 적이 있습니다. 


사전 자료형을 중괄호로 묶여서 {키(key) : 값(value)} 의 쌍으로 이루어진다고 했으며, hash table type 으로 키를 해싱해놓고 있다가, 키를 기준으로 값을 찾으려고 하면 매우 빠른 속도로 찾아주는 효율적이고 편리한 자료형이라고 소개를 했었습니다. 


이번 포스팅에서는 사전 자료형을 


(1) 키를 기준으로 오름차순 정렬 (sort by key in ascending order)

(2) 키를 기준으로 내림차순 정렬 (sort by key in descending order)

(3) 값을 기준으로 오름차순 정렬 (sort by value in ascending order)

(4) 값을 기준으로 내림차순 정렬 (sort by value in descending order) 


하는 방법을 알아보겠습니다. 




{키 : 값} 쌍으로 이루어진 간단한 예제 사전 자료형을 만들어보겠습니다. (프로그래밍 언어별 인기도)


# make a dictionary

pgm_lang = {

    "java": 20, 

    "javascript": 8, 

    "c": 7,  

    "r": 4, 

    "python": 28 } 




 (1) 를 기준으로 오름차순 정렬 (sort by key in ascending order): sorted()


pgm_lang 사전형 자료를 키(key)를 기준으로 알파벳 오름차순으로 정렬해보겠습니다. dict.keys()를 정렬하면 keys 만 정렬된 값을 반환하며, dict.items()를 정렬하면 키(key)를 기준으로 정렬하되 키와 값을 튜플로 묶어서 정렬된 값을 반환합니다. 



sorted(pgm_lang.keys())


['c', 'java', 'javascript', 'python', 'r']



sorted(pgm_lang.items())


[('c', 7), ('java', 20), ('javascript', 8), ('python', 28), ('r', 4)]




그러면, 키를 기준으로 정렬한 (키, 값) 쌍의 튜플을 for loop 을 써서 한줄씩 인쇄를 해보겠습니다. 

첫번째 예는 일반적인 for loop이며, 두번째는 list comprehension 을 이용하여 같은 결과로 인쇄한 예입니다. 



for key, value in sorted(pgm_lang.items()):

    print(key, ":", value)


c : 7
java : 20
javascript : 8
python : 28
r : 4


# list comprehension

[print(key, ":", value) for (key, value) in sorted(pgm_lang.items())]


c : 7
java : 20
javascript : 8
python : 28
r : 4

[None, None, None, None, None]




키를 기준으로 정렬할 때, lambda 함수를 사용하여 새롭게 정의한 키(custom key function, logic)를 사용할 수도 있습니다. 아래 예는 키의 길이(length)를 기준으로 오름차순 정렬을 해본 것입니다. 



# sort a dictionary by custom key function (eg. by the length of key strings)

pgm_lang_len = sorted(pgm_lang.items(), key = lambda item: len(item[0])) # key: [0]


for key, value in pgm_lang_len:

    print(key, ":", value)


c : 7
r : 4
java : 20
python : 28
javascript : 8





 (2) 를 기준으로 내림차순 정렬 (sort by key in descending order): reverse=True


내림차순으로 정렬하려면 reverse=True 옵션을 추가해주면 됩니다. 



# sorting in reverse order

sorted(pgm_lang.keys(), reverse=True)


['r', 'python', 'javascript', 'java', 'c']



for (key, value) in sorted(pgm_lang.items(), reverse=True):

    print(key, ":", value)


r : 4
python : 28
javascript : 8
java : 20
c : 7





 (3) 을 기준으로 오름차순 정렬 (sort by value in ascending order)


값(value)을 기준으로 정렬하려면 앞서 소개했던 lambda 함수를 이용하여 키(key)로 사용할 기준이 값(value), 즉 item[1] 이라고 지정을 해주면 됩니다. (키는 item[0], 값은 item[1] 로 indexing)



sorted(pgm_lang.items(), key = lambda item: item[1]) # value: [1]


[('r', 4), ('c', 7), ('javascript', 8), ('java', 20), ('python', 28)]

 



값을 기준으로 오름차순 정렬한 결과를 for loop을 같이 사용하여 (키 : 값) 한쌍씩 차례대로 프린트를 해보겠습니다. (list comprehension 을 사용해도 결과 동일)



pgm_lang_val = sorted(pgm_lang.items(), key = lambda item: item[1])


for key, value in pgm_lang_val:

    print(key, ":", value)


r : 4
c : 7
javascript : 8
java : 20
python : 28


# list comprehension

[print(key, ":", value) for (key, value) in sorted(pgm_lang.items(), key = lambda item: item[1])]


r : 4
c : 7
javascript : 8
java : 20
python : 28
[None, None, None, None, None]





 (4) 을 기준으로 내림차순 정렬 (sort by value in descending order) 


위의 (3)번과 같이 값을 기준으로 정렬하므로 key=lambda x:x[1] 로 값(value, 즉 x[1])이 정렬 기준이라고 지정을 해주구요, 대신 내림차순이므로 reverse=True 옵션을 추가해주면 됩니다. 



# in reverse order

pgm_lang_val_reverse = sorted(pgm_lang.items()

                              reverse=True

                              key=lambda item: item[1])


for key, value in pgm_lang_val_reverse:

    print(key, ":", value)


python : 28
java : 20
javascript : 8
c : 7
r : 4




바로 위의 예에서는 for loop 순환할 때 key, value 2개 객체로 따로 따로 받았는데요, 바로 아래의 예처럼 items 로 (키, 값) 튜플로 받아서 items[0] 으로 키, items[1] 로 값을 indexing 할 수도 있습니다. 



# the same result with above

for items in pgm_lang_val_reverse:

    print(items[0], ":", items[1])


python : 28
java : 20
javascript : 8
c : 7
r : 4




이상으로 사전 자료형(dictionary)의 키, 값 기준 정렬(sorted)하는 4가지 방법 소개를 마치겠습니다. 



많은 도움이 되었기를 바랍니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


Posted by R Friend R_Friend

댓글을 달아 주세요