지난번 포스팅에서는 Python의 statsmodels  모듈을 이용하여 여러개의 숫자형 변수에 대해 집단 간 평균의 차이가 있는지를 for loop 순환문을 사용하여 검정하는 방법(rfriend.tistory.com/639)을 소개하였습니다. 

 

Python에서 for loop 문을 사용하면 순차적으로 처리 (sequential processing) 를 하게 되므로, 일원분산분석을 해야 하는 숫자형 변수의 개수가 많아질 수록 선형적으로 처리 시간이 증가하게 됩니다. 

 

Greenplum에서 PL/Python (또는 PL/R) 을 사용하면 일원분산분석의 대상의 되는 숫자형 변수가 매우 많고 데이터 크기가 크더라도 분산병렬처리 (distributed parallel processing) 하여 ANOVA test 를 처리할 수 있으므로 신속하게 분석을 할 수 있는 장점이 있습니다.

 

더불어서, 데이터가 저장되어 있는 DB에서 데이터의 이동 없이(no data I/O, no data movement), In-DB 처리/분석이 되므로 work-flow 가 간소화되고 batch scheduling 하기에도 편리한 장점이 있습니다.  

 

만약 데이터는 DB에 있고, 애플리케이션도 DB를 바라보고 있고, 분석은 Python 서버 (또는 R 서버)에서 하는 경우라면, 분석을 위해 DB에서 데이터를 samfile 로 떨구고, 이를 Python에서 pd.read_csv()로 읽어들여서 분석하고, 다시 결과를 text file로 떨구고, 이 text file을 ftp로 DB 서버로 이동하고, psql로 COPY 문으로 테이블에 insert 하는 workflow ... 관리 포인트가 많아서 정신 사납고 복잡하지요?!  

 

자, 이제 Greenplum database에서 PL/Python으로 일원분산분석을 병렬처리해서 집단 간 여러개의 개별 변수별 평균 차이가 있는지 검정을 해보겠습니다. 

 

 

(1) 여러 개의 변수를 가지는 샘플 데이터 만들기

 

정규분포로 부터 난수를 발생시켜서 3개 그룹별로 각 30개 씩의 샘플 데이터를 생성하였습니다. 숫자형 변수로는 'x1', 'x2', 'x3', 'x4'의 네 개의 변수를 생성하였습니다. 이중에서  'x1', 'x2'는 3개 집단이 모두 동일한 평균과 분산을 가지는 정규분포로 부터 샘플을 추출하였고, 반면에 'x3', 'x4'는 3개 집단 중 2개는 동일한 평균과 분산의 정규분포로 부터 샘플을 추출하고 나머지 1개 집단은 다른 평균을 가지는 정규분포로 부터 샘플을 추출하였습니다. (뒤에  one-way ANOVA 검정을 해보면 'x3', 'x4'에 대한 집단 간 평균 차이가 있는 것으로 결과가 나오겠지요?!)

 

import numpy as np
import pandas as pd

# generate 90 IDs 
id = np.arange(90) + 1 

# Create 3 groups with 30 observations in each group. 
from itertools import chain, repeat 
grp = list(chain.from_iterable((repeat(number, 30) for number in [1, 2, 3]))) 

# generate random numbers per each groups from normal distribution 
np.random.seed(1004) 

# for 'x1' from group 1, 2 and 3
x1_g1 = np.random.normal(0, 1, 30) 
x1_g2 = np.random.normal(0, 1, 30) 
x1_g3 = np.random.normal(0, 1, 30) 

# for 'x2' from group 1, 2 and 3 
x2_g1 = np.random.normal(10, 1, 30) 
x2_g2 = np.random.normal(10, 1, 30) 
x2_g3 = np.random.normal(10, 1, 30) 

# for 'x3' from group 1, 2 and 3 
x3_g1 = np.random.normal(30, 1, 30) 
x3_g2 = np.random.normal(30, 1, 30) 
x3_g3 = np.random.normal(50, 1, 30) 

# different mean 
x4_g1 = np.random.normal(50, 1, 30) 
x4_g2 = np.random.normal(50, 1, 30) 
x4_g3 = np.random.normal(20, 1, 30) 

# different mean # make a DataFrame with all together 
df = pd.DataFrame({
    'id': id, 'grp': grp, 
    'x1': np.concatenate([x1_g1, x1_g2, x1_g3]), 
    'x2': np.concatenate([x2_g1, x2_g2, x2_g3]), 
    'x3': np.concatenate([x3_g1, x3_g2, x3_g3]), 
    'x4': np.concatenate([x4_g1, x4_g2, x4_g3])}) 
    

df.head()

 

id

grp

x1

x2

x3

x4

1

1

0.594403

10.910982

29.431739

49.232193

2

1

0.402609

9.145831

28.548873

50.434544

3

1

-0.805162

9.714561

30.505179

49.459769

4

1

0.115126

8.885289

29.218484

50.040593

5

1

-0.753065

10.230208

30.072990

49.601211

 

 

위에서 만든 가상의 샘플 데이터를 Greenplum DB에 'sample_tbl' 이라는 이름의 테이블로 생성해보겠습니다.  Python pandas의  to_sql()  메소드를 사용하면 pandas DataFrame을 쉽게 Greenplum DB (또는 PostgreSQL DB)에 uploading 할 수 있습니다.  

 

# creating a table in Greenplum by importing pandas DataFrame
conn = "postgresql://gpadmin:changeme@localhost:5432/demo"

df.to_sql('sample_tbl', 
         conn, 
         schema = 'public', 
         if_exists = 'replace', 
         index = False)
 

 

 

 

Jupyter Notebook에서 Greenplum DB에 접속해서 SQL로 이후 작업을 진행하겠습니다.

(Jupyter Notebook에서 Greenplum DB access 하고 SQL query 실행하는 방법은 rfriend.tistory.com/572 참조하세요)

 

-- 여기서 부터는 Jupyter Notebook에서 실행한 것입니다. --

%load_ext sql

# postgresql://Username:Password@Host:Port/Database
%sql postgresql://gpadmin:changeme@localhost:5432/demo
[Out][
'Connected: gpadmin@demo'

 

 

 

위 (1) 에서 pandas 의 to_sql() 로 importing 한 sample_tbl 테이블에서 5개 행을 조회해보겠습니다. 

 

%sql select * from sample_tbl order by id limit 5;
 * postgresql://gpadmin:***@localhost:5432/demo
5 rows affected.

[Out]
id	grp	x1	                x2	                x3	                x4
1	1	0.594403067344276	10.9109819091195	29.4317394311833	49.2321928075563
2	1	0.402608708677309	9.14583073327387	28.54887315985  	50.4345438286737
3	1	-0.805162233589535	9.71456131309311	30.5051787625131	49.4597693977764
4	1	0.115125695763445	8.88528940547472	29.2184835450055	50.0405932387396
5	1	-0.753065219532709	10.230207786414 	30.0729900069999	49.6012106088522

 

 

 

(2) 데이터 구조 변경: reshaping from wide to long

 

PL/Python에서 작업하기 쉽도록 테이블 구조를  wide format에서 long format 으로 변경하겠습니다. union all 로 해서 칼럼 갯수 만큼 위/아래로 append  해나가면 되는데요, DB 에서 이런 형식의 데이터를 관리하고 있다면 아마도 이미 long format 으로 관리하고 있을 가능성이 높습니다. (새로운 데이터가 수집되면 계속  insert into 하면서 행을 밑으로 계속 쌓아갈 것이므로...)

 

%%sql
-- reshaping a table from wide to long
drop table if exists sample_tbl_long;
create table sample_tbl_long as (
    select id, grp, 'x1' as col, x1 as val from sample_tbl
    union all 
    select id, grp, 'x2' as col, x2 as val from sample_tbl
    union all 
    select id, grp, 'x3' as col, x3 as val from sample_tbl
    union all 
    select id, grp, 'x4' as col, x4 as val from sample_tbl
) distributed randomly;

 * postgresql://gpadmin:***@localhost:5432/demo
Done.
360 rows affected.



%sql select * from sample_tbl_long order by id, grp, col limit 8;

[Out]
 * postgresql://gpadmin:***@localhost:5432/demo
8 rows affected.
id	grp	col	val
1	1	x1	0.594403067344276
1	1	x2	10.9109819091195
1	1	x3	29.4317394311833
1	1	x4	49.2321928075563
2	1	x1	0.402608708677309
2	1	x2	9.14583073327387
2	1	x3	28.54887315985
2	1	x4	50.4345438286737

 

 

 

(3) 분석 결과 반환 composite type 정의

 

일원분산분석 결과를 반환받을 때 각 분석 대상 변수 별로 (a) F-통계량, (b) p-value 의 두 개 값을 float8 데이터 형태로  반환받는 composite type 을 미리 정의해놓겠습니다. 

%%sql
-- Creating a coposite return type
drop type if exists plpy_anova_type cascade;
create type plpy_anova_type as (
    f_stat float8
    , p_val float8
);

 * postgresql://gpadmin:***@localhost:5432/demo
Done.
Done.

 

 

 

(4)  일원분산분석(one-way ANOVA) PL/Python 사용자 정의함수 정의

 

집단('grp')과 측정값('val')을 input 으로 받고, statsmodels 모듈의 sm.stats.anova_lm() 메소드로 일원분산분석을 하여 결과 테이블에서 'F-통계량'과 'p-value'만 인덱싱해서 반환하는 PL/Python 사용자 정의 함수를 정의해보겠습니다. 

 

%%sql
-- Creating the PL/Python UDF of ANOVA
drop function if exists plpy_anova_func(text[], float8[]);
create or replace function plpy_anova_func(grp text[], val float8[])
returns plpy_anova_type 
as $$
    import pandas as pd  
    import statsmodels.api as sm
    from statsmodels.formula.api import ols
    
    df = pd.DataFrame({'grp': grp, 'val': val})
    model = ols('val ~ grp', data=df).fit()
    anova_result = sm.stats.anova_lm(model, typ=1)
    return {'f_stat': anova_result.loc['grp', 'F'], 
            'p_val': anova_result.loc['grp', 'PR(>F)']}
$$ language 'plpythonu';

 * postgresql://gpadmin:***@localhost:5432/demo
Done.
Done.

 

 

 

(5) 일원분산분석(one-way ANOVA) PL/Python 함수 분산병렬처리 실행

 

PL/Python 사용자 정의함수는 SQL query 문으로 실행합니다. 이때 PL/Python 이 'F-통계량'과 'p-value'를 반환하도록 UDF를 정의했으므로 아래처럼 (plpy_anova_func(grp_arr, val_arr)).* 처럼 ().* 으로 해서 모든 결과('F-통계량' & 'p-value')를 반환하도록 해줘야 합니다. (빼먹고 실수하기 쉬우므로 ().*를 빼먹지 않도록 주의가 필요합니다)

 

이렇게 하면 변수별로 segment nodes 에서 분산병렬로 각각 처리가 되므로, 변수가 수백~수천개가 있더라도 (segment nodes가 많이 있다는 가정하에) 분산병렬처리되어 신속하게 분석을 할 수 있습니다. 그리고 결과는 바로 Greenplum DB table에 적재가 되므로 이후의 application이나 API service에서 가져다 쓰기에도 무척 편리합니다. 

 

%%sql
-- Executing the PL/Python UDF of ANOVA
drop table if exists plpy_anova_table;
create table plpy_anova_table as (
    select 
        col
        , (plpy_anova_func(grp_arr, val_arr)).*
    from (
        select
            col
            , array_agg(grp::text order by id) as grp_arr
            , array_agg(val::float8 order by id) as val_arr
        from sample_tbl_long
        group by col
    ) a
) distributed randomly;

 * postgresql://gpadmin:***@localhost:5432/demo
Done.
4 rows affected.

 

 

총 4개의 각 변수별 일원분산분석 결과를 조회해보면 아래와 같습니다. 

%%sql
select * from plpy_anova_table order by col;

[Out]
 * postgresql://gpadmin:***@localhost:5432/demo
4 rows affected.
col	f_stat	p_val
x1	0.773700830155438	0.46445029458511966
x2	0.20615939957339052	0.8140997216173114
x3	4520.512608893724	1.2379278415456727e-88
x4	9080.286130418674	1.015467388498996e-101

 

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!  :-)

 

728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이번 포스팅에서는 PostgreSQL, Greenplum database에서 SQL, MADlib 함수, PL/R, PL/Python을 사용해서 연속형 데이터에 대한 요약통계량을 구하는 방법을 소개하겠습니다.  무척 쉬운 내용이므로 쉬어가는 코너 정도로 가볍게 생각해주시면 좋겠습니다. ^^


PostgreSQL, Greenplum database 에서 연속형 데이터에 대해 그룹별로, 

(1) SQL 로 요약통계량 구하기

(2) Apache MADlib 으로 요약통계량 구하기





참고로, 이번 포스팅에서는 PostgreSQL 9.4, Greenplum 6.10.1 버전을 사용하였으며, PostgreSQL 9.4 버전보다 낮은 버전을 사용하면 최빈값(mode), 사분위부(percentile) 구하는 함수를 사용할 수 없습니다. 


먼저, 예제로 사용하기 위해 '나이'의 연속형 데이터와 '성별'의 범주형 데이터 (그룹)를 가진 간단한 테이블을 만들어보겠습니다. 결측값(missing value)도 성별 그룹별로 몇 개 넣어봤습니다. 



DROP TABLE IF EXISTS cust;

CREATE TABLE cust (id INT, age INT, gender TEXT);

INSERT INTO cust VALUES

(1,NULL,'M'),

(2,NULL,'M'),

(3,25,'M'),

(4,28,'M'),

(5,27,'M'),

(6,25,'M'),

(7,26,'M'),

(8,29,'M'),

(9,25,'M'),

(10,27,'M'),

(11,NULL,'F'),

(12,23,'F'),

(13,25,'F'),

(14,23,'F'),

(15,24,'F'),

(16,26,'F'),

(17,23,'F'),

(18,24,'F'),

(19,22,'F'),

(20,23,'F');

 




 (1) SQL로 연속형 데이터의 그룹별 요약통계량 구하기


함수가 굳이 설명을 안해도 될 정도로 간단하므로 길게 설명하지는 않겠습니다. 


표준편차 STDDEV() 와 분산 VARIANCE() 함수는 표본표준편차(sample standard deviation), 표본분산(sample variance) 를 계산해줍니다. 만약 모표준편차(population standard deviation), 모분산(population variance)를 구하고 싶으면 STDDEV_POP(), VAR_POP() 함수를 사용하면 됩니다. 


PostgreSQL 9.4 버전 이상부터 최빈값(MODE), 백분위수(Percentile) 함수가 생겨서 정렬한 후에 집계하는 기능이 매우 편리해졌습니다. (MODE(), PERCENTILE_DISC() 함수를 사용하지 않고 pure SQL로 최빈값과 백분위수를 구하려면 query 가 꽤 길어집니다.)



SELECT

    gender AS group_by_value

    , 'age' AS target_column

    , COUNT(*) AS row_count

    , COUNT(DISTINCT age) AS distinct_values

    , AVG(age)

    , VARIANCE(age)

    , STDDEV(age)

    , MIN(age)

    , PERCENTILE_DISC(0.25) WITHIN GROUP (ORDER BY age) AS first_quartile

    , MEDIAN(age)

    , PERCENTILE_DISC(0.75) WITHIN GROUP (ORDER BY age) AS third_quartile

    , MAX(age)

    , MODE() WITHIN GROUP (ORDER BY age) -- over PostgreSQL 9.4

FROM cust

WHERE age IS NOT NULL

GROUP BY gender

ORDER BY gender;





성별 그룹별로 연령(age) 칼럼의 결측값 개수를 구해보겠습니다. 

결측값 개수는 WHERE age IS NULL 로 조건절을 주고 COUNT(*)로 행의 개수를 세어주면 됩니다. 



SELECT 

    gender

    , COUNT(*) AS missing_count

FROM cust

WHERE age IS NULL

GROUP BY gender

ORDER BY gender;


Out[5]:
gendermissing_count
F1
M2





위의 집계/ 요약통계량과 결측값 개수를 하나의 조회 결과로 보려면 아래처럼 Join 을 해주면 됩니다.



WITH summary_tbl AS (
    SELECT
        gender AS group_by_value
        , 'age' AS target_column
        , COUNT(*) AS row_count
        , COUNT(DISTINCT age) AS distinct_values
        , AVG(age)
        , VARIANCE(age)
        , STDDEV(age)
        , MIN(age)
        , PERCENTILE_DISC(0.25) WITHIN GROUP (ORDER BY age) AS first_quartile
        , MEDIAN(age)
        , PERCENTILE_DISC(0.75) WITHIN GROUP (ORDER BY age) AS third_quartile
        , MAX(age)
        , MODE() WITHIN GROUP (ORDER BY age)
    FROM cust
    WHERE age IS NOT NULL
    GROUP BY gender
    ORDER BY gender
), missing_tbl AS (
    SELECT
        gender AS group_by_value
        , COUNT(*) AS missing_count
    FROM cust
    WHERE age IS NULL
    GROUP BY gender
)
SELECT a.*, b.missing_count
FROM summary_tbl a LEFT JOIN missing_tbl b USING(group_by_value)
;

 




  (2) Apache MADlib으로 연속형 데이터의 그룹별 요약통계량 구하기


Apache MADlib의 madlib.summary() 함수를 사용하면 단 몇 줄의 코드만으로 위의 (1)번에서 SQL 집계 함수를 사용해서 길게 짠 코드를 대신해서 매우 깔끔하고 간단하게 구할 수 있습니다. 


아래는 (1)번의 결과를 얻기위해 성별(gender) 연령(age) 칼럼의 집계/요약데이터를 구하는 madlib.summary() 함수 예시입니다. 


Target columns 위치에는 1 개 이상의 분석을 원하는 연속형 데이터 칼럼을 추가로 넣어주기만 하면 되므로 (1) 번의 pure SQL 대비 훨씬 편리한 측면이 있습니다! 


그리고 그룹별로 구분해서 집계/요약하고 싶으면 Grouping columns 위치에 기준 칼럼 이름을 넣어주기만 하면 되므로 역시 (1)번의 pure SQL 대비 훨씬 편리합니다!



DROP TABLE IF EXISTS cust_summary;

SELECT madlib.summary('cust'     -- Source table

                      ,'cust_summary'   -- Output table

                      , 'age'                -- Target columns

                      , 'gender'            -- Grouping columns

);






madlib.summary() 함수의 결과 테이블에서 조회할 수 있는 집계/요약통계량 칼럼 리스트는 아래와 같습니다. 



SELECT column_name

FROM INFORMATION_SCHEMA.COLUMNS

    WHERE TABLE_SCHEMA = 'public'

        AND TABLE_NAME    = 'cust_summary'

    ORDER BY ORDINAL_POSITION;

Out[7]:
column_name
group_by
group_by_value
target_column
column_number
data_type
row_count
distinct_values
missing_values
blank_values
fraction_missing
fraction_blank
positive_values
negative_values
zero_values
mean
variance
confidence_interval
min
max
first_quartile
median
third_quartile
most_frequent_values
mfv_frequencies

 



[Reference]

* PostgreSQL aggregate functions: https://www.postgresql.org/docs/9.4/functions-aggregate.html

* Apache MADlib summary function: https://madlib.apache.org/docs/v1.11/group__grp__summary.html



다음번 포스팅에서는 PostgreSQL, Greenplum에서 SQL과 Apache MADlib을 이용하여 상관계수, 상관계수 행렬을 구하는 방법(https://rfriend.tistory.com/581)을 소개하겠습니다.


이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

지난번 포스팅에서는 Python의 ipython-sql, psycopg2 패키지를 사용하여 Jupyter Notebook에서 PostgreSQL, Greenplum database에 접속할 수 있는 4가지 방법(https://rfriend.tistory.com/577)을 소개하였습니다.


이번 포스팅에서는 Python의 ipython-sql, psycopg2 패키지를 사용하여 PostgreSQL, Greenplum database에 SQL query를 할 때 Jupyter Notebook의 로컬 변수를 SQL query에 대입하여 변수값을 동적으로 대체해가면서 query 할 수 있는 3가지 방법을 소개하겠습니다.


Python의 로컬 변수를 SQL query 문에 사용할 수 있으므로 Python과 PostgreSQL, Greenplum DB를 서로 연동해서 데이터분석과 프로그래밍을 하는 경우 매우 강력하고 유용하게 사용할 수 있습니다.


(방법 1) Variable Substitution:  %sql SELECT :variable_name

(방법 2) Variable Substitution:  %sql SELECT {variable_name}

(방법 3) Variable Substitution:  %sql SELECT $variable_name





  (0) 필요 Python 패키지 사전 설치


아래의 SQLAlchemy, psycopg2, ipython-sql, pgspecial, sql_magic 중에서 아직 설치가 안된 패키지가 있다면 아래처럼 명령 프롬프트 창에서 Python의 패키지를 설치해줍니다.



-- (명령 프롬프트 창에서 pip 로 설치)

$ pip install --upgrade pip

$ pip install sqlalchemy

$ pip install psycopg2

$ pip install ipython-sql==0.3.9

$ pip install pgspecial

 



ipython-sql 패키지로 Jupyter Notebook에서 Greenplum database에 접속한 후에, 예제로 사용할 간단한 houses 테이블을 만들어보겠습니다.



%load_ext sql


%sql postgresql://gpadmin:changeme@localhost/demo

[Out] 'Connected: gpadmin@demo'


%sql select version();

 * postgresql://gpadmin:***@localhost/demo
1 rows affected.
Out[3]:
version
PostgreSQL 9.4.24 (Greenplum Database 6.10.1 build commit:efba04ce26ebb29b535a255a5e95d1f5ebfde94e) on x86_64-unknown-linux-gnu, compiled by gcc (GCC) 6.4.0, 64-bit compiled on Aug 13 2020 02:56:29


%%sql
DROP TABLE IF EXISTS houses;
CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT,
            size INT, lot INT, region TEXT);
INSERT INTO houses VALUES
  (1 ,  590 ,       2 ,    1 ,  50000 ,  770 , 22100, 'seoul'),
  (2 , 1050 ,       3 ,    2 ,  85000 , 1410 , 12000, 'seoul'),
  (3 ,   20 ,       3 ,    1 ,  22500 , 1060 ,  3500, 'busan'),
  (4 ,  870 ,       2 ,    2 ,  90000 , 1300 , 17500, 'seoul'),
  (5 , 1320 ,       3 ,    2 , 133000 , 1500 , 30000, 'bundang'),
  (6 , 1350 ,       2 ,    1 ,  90500 ,  820 , 25700, 'bundang'),
  (7 , 2790 ,       3 ,  2.5 , 260000 , 2130 , 25000, 'busan'),
  (8 ,  680 ,       2 ,    1 , 142500 , 1170 , 22000, 'busan'),
  (9 , 1840 ,       3 ,    2 , 160000 , 1500 , 19000, 'inchon'),
 (10 , 3680 ,       4 ,    2 , 240000 , 2790 , 20000, 'seoul'),
 (11 , 1660 ,       3 ,    1 ,  87000 , 1030 , 17500, 'inchon'),
 (12 , 1620 ,       3 ,    2 , 118600 , 1250 , 20000, 'busan'),
 (13 , 3100 ,       3 ,    2 , 140000 , 1760 , 38000, 'bundang'),
 (14 , 2070 ,       2 ,    3 , 148000 , 1550 , 14000, 'bundang'),
 (15 ,  650 ,       3 ,  1.5 ,  65000 , 1450 , 12000, 'inchon');





  (방법 1) Variable Substitution:   %sql SELECT :variable_name


첫번째 방법은 :variable_name 과 같은 named style 을 사용해서 Jupyter Notebook에서 local namespace에 생성한 변수 이름을 SQL query에 넣어서 동적으로 값을 바꾸어 가면서 query 를 해보겠습니다.


(1-1) :variable_name 으로 SQL의 정수(integer) 변수값 대체



id_var = (1, 5, 15)

%sql SELECT * FROM houses WHERE id IN :id_var;

[Out]

* postgresql://gpadmin:***@localhost/demo 3 rows affected.

Out[123]:
idtaxbedroombathpricesizelotregion
159021.05000077022100seoul
5132032.0133000150030000bundang
1565031.565000145012000inchon

 



(1-2) :variable_name 으로 SQL의 문자형(character) 변수값 대체



region_var = 'seoul'

%sql SELECT * FROM houses WHERE region = :region_var;

[Out]

* postgresql://gpadmin:***@localhost/demo 4 rows affected.

Out[125]:
idtaxbedroombathpricesizelotregion
10368042.0240000279020000seoul
159021.05000077022100seoul
2105032.085000141012000seoul
487022.090000130017500seoul


 




  (방법 2) Variable Substitution:  %sql SELECT {variable_name}


(2-1) {variable_name} 으로 SQL의 정수(integer) 변수값 대체



id_var = (1, 5, 15)

%sql SELECT * FROM houses WHERE id IN {id_var};

[Out]

* postgresql://gpadmin:***@localhost:5432/demo 3 rows affected.

Out[126]:
idtaxbedroombathpricesizelotregion
159021.05000077022100seoul
5132032.0133000150030000bundang
1565031.565000145012000inchon

 



(2-2) '{variable_name}' 으로 SQL의 문자형(character) 변수값 대체



region_var = 'seoul'

%sql SELECT * FROM houses WHERE region = '{region_var}';

[Out]

* postgresql://gpadmin:***@localhost:5432/demo 4 rows affected.

Out[127]:
idtaxbedroombathpricesizelotregion
159021.05000077022100seoul
10368042.0240000279020000seoul
2105032.085000141012000seoul
487022.090000130017500

seoul




  (방법 3) Variable Substitution:  %sql SELECT $variable_name


(3-1) $variable_name 으로 SQL의 정수형(integer) 변수값 대체



id_var = (1, 5, 15)

%sql SELECT * FROM houses WHERE id IN $id_var;

[Out]

* postgresql://gpadmin:***@localhost:5432/demo 3 rows affected.

Out[128]:
idtaxbedroombathpricesizelotregion
159021.05000077022100seoul
5132032.0133000150030000bundang
1565031.565000145012000inchon

 



(3-2) $variable_name 으로 SQL의 문자형(character) 변수값 대체


localname space에 문자형의 bind parameter 값 입력해줄 때 큰따옴표(" ")로 감싸주고, 그 안에 작은따옴표(' ')로 값 입력해주도록 하세요. 그냥 작은따옴표(' ')만 했더니 칼럼으로 인식을 해서 에러가 나네요.



region_var = "'seoul'"

%sql SELECT * FROM houses WHERE region = $region_var;

[Out]

* postgresql://gpadmin:***@localhost:5432/demo 3 rows affected.

Out[171]:
idtaxbedroombathpricesizelotregion
2105032.085000141012000seoul
487022.090000130017500seoul
10368042.0240000279020000seoul

 



* Reference: https://pypi.org/project/ipython-sql/



이번 포스팅이 많은 도움이 되었기를 바랍니다.

행복한 데이터 과학자 되세요!



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

지난번 포스팅에서는 Python의 ipython-sql, pgspecial 패키지를 사용하여 Jupyter Notebook 에서 PostgreSQL, Greenplum database 에 접속(access)하고 SQL query, meta-commands 를 하는 방법(https://rfriend.tistory.com/572)을 간략하게 소개하였습니다.


이번 포스팅에서는 psycopg2 와 ipython-sql 패키지를 사용하여 Jupyter Notebook에서 PostgreSQL, Greenplum database 에 접속하는 4가지 방법을 추가로 소개하겠습니다.


특히, 사용자이름(username), 비밀번호(password), 호스트(host), 포트(port), 데이터베이스(database) 등과 같이 보안이 요구되고 다른 사용자에게 노출이나 공유가 되면 곤란한 정보들(DB Credentials)을 Jupyter Notebook에서 표기/노출하지 않고 별도의 파일로 보관하면서, 이를 불러와서 DB access 할 수 있는 방법들에 주안점을 두고 소개하겠습니다.


-- Jupyter Notebook 의 Cell 안에서 DB credentials 직접 입력 (* 외부 노출되므로 권장하지 않음)

(1) %sql postgresql://Username:Password@Host:Port/Database

(2) %sql $connection_string


-- 별도의 폴더에 별도의 파일로 DB credentials 관리하고, 이를 불러와서 Jupyter Notebook에 입력

    (* 보안유지 되므로 권장함)

(3) config.py 별도 파일 & %sql $connection_string

(4) db_credentions 별도 파일 & %config SqlMagic.dsn_filename = db_cred_path





(0) Python 패키지 사전 설치


먼저, 명령 프롬프트 창에서 아래의 PostgreSQL, Greenplum database에 접속하고 SQL query 를 하기 위해 필요한 Python 패키지들을 pip로 설치해줍니다.



-- (명령 프롬프트 창에서 설치)

$ pip install --upgrade pip

$ pip install sqlalchemy

$ pip install psycopg2

$ pip install ipython-sql==0.3.9

$ pip install pgspecial

$ pip install sql_magic

 



-- Jupyter Notebook 의 Cell 안에서 DB credentials 직접 입력

   (* 편리하기는 하지만, DB 접속 정보가 외부에 노출되므로 권장하지 않음. )


 (1) %sql postgresql://Username:Password@Host:Port/Database


가장 편리한 방법은 SQLAlchemy 표준 URL (database-driver://Username:Password@Host:Port/Database) 에 따라 PostgreSQL, Greenplum database에 connection engine을 생성하여 접속하는 방법입니다.


하지만, 이 방법은 Jupyter Notebook에 DB 접속정보가 고스란히 노출되기 때문에 만약 다른 조직, 팀원 간에 협업을 하고 notebook 파일을 공유해야할 일이 생길 경우 보안 방침에 위배가 되므로 권장하는 방법은 아닙니다.



%load_ext sql


# postgresql://Username:Password@Host:Port/Database
%sql postgresql://gpadmin:changeme@localhost:5432/demo

[Out] 'Connected: gpadmin@demo'







 (2) %sql $connection_string


%sql $connection_string 문으로 Jupyter Notebook에서 동적으로 DB credentials 를 Python string format 으로 입력받아서 PostgreSQL, Greenplum database에 접속할 수 있습니다. 


다만, 아래처럼 DB credentials 를 Jupyter notebook 의 Cell 안에서 직접 입력하면 DB 접속 정보가 외부로 노출되는 문제가 있습니다.



%load_ext sql


# DB credentials

username = "gpadmin"
password = "changeme"
host = "localhost"
port = "5432"
database = "demo"


# connection strings using Python string format
connection_string = "postgresql://{user}:{password}@{host}:{port}/{db}".format(
    user=username,
    password=password,
    host=host,
    port=port,
    db=database)


# dynamic access dredentials
%sql $connection_string

 





-- 별도의 폴더에 별도의 파일로 DB credentials 관리하고, 이를 불러와서 Jupyter Notebook에 입력

    (* 보안유지 되므로 권장함)


 (3) config.py 별도 파일 & %sql $connection_string


세번째 방법은 DB Credentials 정보를 별도의 파일에 분리해서 만들어놓고, 이를 불러와서 DB connect 하는 방법입니다. 아래에 예를 들어보면, (폴더, 파일 이름은 각자 알아서 정해주면 됨)


(a) HOME directory 밑에 DB credentials 파일을 넣어둘 'db_cred' 라는 이름의 폴더 만들고,

(b) 'db_cred' 폴더 안에 'gpdb_credentials.py', '__init__.py' 라는 이름의 2개의 Python 파일을 생성함.

     'gpdb_credentials.py' 파일에는 Dictionary (Key : Value 짝) 형태로 Username, Password, Host, Port, Database 정보를 입력해줌. 여러개의 Database 별로 credentials 정보를 각각 다른 이름의 Dictionary 로 하나의 파일 안에 생성해놓을 수 있음.

     '__init__.py' 파일은 내용은 비어있으며, 해당 폴더의 Python 파일을 패키지로 만들기 위해 생성해줌.

(c) Jupyter Notebook 을 작업하는 Directory 에서도 HOME directory 밑의 'db_cred' 폴더에 접근해서 'gpdb_credentials.py' 파일에 접근할 수 있도록 sys.path.append(cred_path) 로 Python 의 Path 에 추가해줌. (sys.path.append(cred_path))

(d) 작업을 하는 Jupyter Notebook 에서 'from gpdb_credentials import demo_db' 문으로 gpdb_credentials.py 파일에서 'demo_db' Dictionary 를 불러옴.

(e) 'demo_db' Dictionary 에서 DB connection에 필요한 정보를 파싱해옴. (dict['key'] 인덱싱)

(f) %sql $ 문 뒤에 (e)에서 파싱해서 만든 connection_string을 입력해서 DB connect 함.



%load_ext sql


# put a folder and DB credential files at HOME directory

import os
homedir = os.getenv('HOME')
cred_path = os.path.join(homedir, 'db_cred')


# add a 'cred_path' for interpreter to search
import sys
sys.path.append(cred_path)


# import DB credentials from 'gpdb_credentials.py' dictionary file.

from gpdb_credentials import demo_db


# parsing DB credentials and connect to Greenplum using %sql $connection_string

username = demo_db['Username']
password = demo_db['Password']
host = demo_db['Host']
port = demo_db['Port']
database = demo_db['Database']

connection_string = "postgresql://{user}:{password}@{host}:{port}/{db}".format(
    user=username,
    password=password,
    host=host,
    port=port,
    db=database)

%sql $connection_string






(4) db_credentials 별도 파일 & %config SqlMagic.dsn_filename = db_cred_path


명령 프롬프트 창에서 아래처럼 0.3.9 버전의 ipython-sql을 설치해줍니다. (최신 버전은 0.4.0 이지만 Python 3.x. 버전의 ipython-sql 0.4.0 버전에 DSN connections 를 하는데 있어 config 를 반환하지 않는 bug가 있습니다. config bug fix 되기 전까지는 0.3.9 버전으로 사용하기 바랍니다.)


-- 명령 프롬프트 창에서 ipython-sql 0.3.9 버전 설치

pip install ipython-sql==0.3.9


(a) PostgreSQL, Greenplum database 접속 정보(connection info.)를 별도의 configuration file 에 저장하여 HOME directory 밑에 보관합니다. 이때 2개 이상의 복수의 DB credentials 정보를 [DB alias] 로 구분해서 하나의 configuration file에 저장해서 사용할 수 있습니다.


파일 이름을 ".odbc.ini", ".dsn.ini" 처럼 "."으로 시작하면 '숨김 파일(hidden file)'이 되어 평상시에는 탐색기, Finder에서는 볼 수가 없으므로 DB 접속정보를 관리하는데 좀더 보안에 유리합니다.

(참고로, Windows OS에서 숨김파일을 보려면, Windows 탐색기에서 [구성] > [폴더 및 검색 옵션] > [폴더 옵션] 대화상자에서 [보기] 탭을 클릭 > [고급 설정]에서 "숨김 파일 밒 폴더 표시"를 선택하면 됩니다.

Mac OS 에서는 Finder에서 "Shift + Command + ." 동시에 눌러주면 숨김 파일이 표시됩니다.)


(b) Jupyter Notebook에서 ipython-sql 로 DSN connections 을 할 수 있습니다.

    %config SqlMagic.dsn_filename = "$homedir/.odbc.ini"


(c) DB connect 된 이후에 제일 처음으로 %sql 로 SQL query 할 때 DB credentions 의 DB alias 를 [ ] 안에 넣어서 명시를 해주고(예: %sql [demo_db] SELECT version();), 그 다음부터 %sql 문으로 SQL query 할 때는 DB alias 를 안써주고 바로 SQL query 를 하면 됩니다.


(d) Jupyter Notebook의 중간 Cell 에서 사용(connect)하려는 DB를 바꾸고 싶으면 %sql [DB_alias2] SELECT .... 처럼 [DB_alias] 부분에 다른 DB alias 이름을 명시해주고 SQL query 를 하면, 그 이후 Cell 부터는 새로운 DB 를 connect 해서 query를 할 수 있습니다.

(예: %sql [dev_db] SELECT COUNT(*) FROM tbl;)



%load_ext sql


import os
homedir = os.getenv('HOME')

# parse and configure gpdb credentials and access to GPDB
%config SqlMagic.dsn_filename = "$homedir/.odbc.ini"

# put [alias_name] after %sql in the first line
%sql [demo_db] SELECT version();

[Out] * postgresql://gpadmin:***@localhost:5432/demo

1 rows affected.



* Reference: https://pypi.org/project/ipython-sql/


다음 포스팅에서는 ipython-sql 로 PostgreSQL, Greenplum database에 접속하여 Jupyter Notebook 의 로컬변수로 동적으로 SQL query 하는 3가지 방법(https://rfriend.tistory.com/578)을 소개하겠습니다.


이번 포스팅이 많은 도움이 되었기를 바랍니다.

행복한 데이터 과학자 되세요!



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

Python의 SQLAlchemy (모든 DB), psycopg2 (PostgreSQL, Greenplum) 패키지를 이용하여 Spyder 나 Pycharm 과 같은 IDE에서 PostgreSQL, Greenplum database에 접속(access) 하고 SQL query 를 할 수 있습니다.

 

 

 

그렇다면 Jupyter Notebook 에서도 DB access, SQL query를 할 수 있으면 편하겠지요?

 

이번 포스팅에서는 Python의 ipython-sql 과 pgspecial 패키지를 이용하여 PostgreSQL, Greenplum database 에 Jupyter Notebook으로 접속(access DB)하여 SQL query 를 하는 방법을 소개하겠습니다.

 


(1) ipython-sql 로 PostgreSQL, Greenplum DB 접속(access)하기

(2) ipython-sql 로 PostgreSQL, Greenplum DB에 SQL query 하기 (%sql, %%sql)

(3) pgspecial 로 PostgreSQL, Greenplum DB에 meta-commands query 하기 (\l, \dn, \dt)

 

 

 

 

 

(0) 사전 설치가 필요한 Python 패키지 리스트

 

명령 프롬프트 창에서 아래의 5개 패키지에 대해서 pip 로 설치해주시기 바랍니다.

 

sqlalchemy, psycopg2는 PostgreSQL, Greenplum DB 접속(access, connection)를 위해서 필요한 Python 패키지 입니다.

 

ipython-sql, sql_magic은 IPython으로 Jupyter Notebook에서 DB access, SQL query 를 하기 위해 필요한 Python 패키지입니다.

 

pgspecial은 Jupyter Notebook에서 PostgreSQL, Greenplum DB에 meta-commands (역슬래쉬 \ 로 시작하는, psql 에서 사용하는 \l, \dn, \dt 명령문) 를 위해 필요한 Python 패키지입니다.

 

ipython-sql 의 경우 2020.12월 현재 0.4.0 버전 (python 3.x) 이 최신인데요, %config로 DB access 하는 명령문의 bug가 아직 fix가 안되어 있어서, 아래처럼 ipython-sql==0.3.9 로 한단계 낮은 버전으로 설치해주세요.

 

 

-- 명령 프롬프트 창에서 pip 로 python 패키지 설치

 

$ pip install --upgrade pip

$ pip install sqlalchemy

$ pip install psycopg2

$ pip install ipython-sql==0.3.9

$ pip install pgspecial

$ pip install sql_magic

 

 

만약 psycopg2 모듈을 pip 로 설치하다가 에러가 나면 아래처럼 wheel package 를 이용해서 psycopg2-binary 로 설치해보세요. 

 

    Error: pg_config executable not found.    

    pg_config is required to build psycopg2 from source.  Please add the directory

    containing pg_config to the $PATH or specify the full executable path with the

    option:   

        python setup.py build_ext --pg-config /path/to/pg_config build ..

    or with the pg_config option in 'setup.cfg'.

 

 

$ pip install psycopg2-binary

 

 

 (1) ipython-sql 로 PostgreSQL, Greenplum DB 접속(access)하기

 

%load_ext sql 로 IPython의 sql 을 로딩하여 %sql 또는 %%sql magic 명령문을 사용할 수 있습니다.

PostgreSQL, Greenplum database에 접속할 때는 SQLAlchemy 의 표준 URL connect strings 를 사용합니다.

 

[ SQLAlchemy 의 표준 Database URL]

 

 dialect+driver://username:password@hoat:port/database

 

아래의 db credentials 로 Greenplum database에 접속할 때의 예입니다.

- driver: postgresql

- username: gpadmin

- password: changeme

- host: localhost

- port: 5432

- database: demo

 

 

%load_ext sql

 

# postgresql://Username:Password@Host:Port/Database
%sql postgresql://gpadmin:changeme@localhost:5432/demo

[Out] 'Connected: gpadmin@testdb'

 

 

 

 

* 위의 %sql SQLAlchemy 표준 URL 방법 외에 Jupyter Notebook에서 PostgreSQL, Greenplum DB에 접속하는 다른 3가지 추가 방법은 https://rfriend.tistory.com/577 를 참고하세요.

 

 

 

 (2) ipython-sql 로 PostgreSQL, Greenplum DB에 SQL query 하기 (%sql, %%sql)

 

Jupyter Notebook의 Cell 안에 1줄 SQL query일 경우는 %sql 로 시작하고, 2줄 이상 SQL query 일 경우에는 %%sql 로 시작합니다.

 

(2-1) %sql : 1줄의 SQL query

 

1줄짜리 SELECT 문으로 PostgreSQL의 버전을 확인해보겠습니다.

 

 

%sql SELECT version();

 

[Out]

version

PostgreSQL 9.4.24 (Greenplum Database 6.10.1 build commit:efba04ce26ebb29b535a255a5e95d1f5ebfde94e) on x86_64-unknown-linux-gnu, compiled by gcc (GCC) 6.4.0, 64-bit compiled on Aug 13 2020 02:56:29

 

 

 

 

 

 

(2-1) %%sql : 2줄 이상의 SQL query

 

아래 예제는 pg_catalog.pg_tables 테이블에서 스키마 이름이 pg_catalog, information_schema 가 아닌 테이블을 조회하여 1개만 반환해보는 query 입니다.

 

 

%%sql
SELECT *
FROM pg_catalog.pg_tables
WHERE schemaname != 'pg_catalog' AND
    schemaname != 'information_schema'
LIMIT 1;

 

 

 

 

 

 (3) pgspecial 로 PostgreSQL, Greenplum DB에 meta-commands (\l, \dn, \dt)

 

meta-commands 는 psql 에서 역슬래쉬(\)와 함께 사용해서 데이터베이스, 스키마, 테이블 등을 조회할 때 사용하는 명령어를 말합니다. pgspecial 패키지는 Jupyter Notebook에서 meta-commands 를 사용할 수 있게 해줍니다.

 

(3-1) database 조회 : %sql \l  (역슬래쉬 + L)

 

 

%sql \l

 

[Out]

Name

Owner

Encoding

Collate

Ctype

Access privileges

demo

gpadmin

UTF8

en_US.utf8

en_US.utf8

=Tc/gpadmin

gpadmin=CTc/gpadmin

dsuser=CTc/gpadmin

gpperfmon

gpadmin

UTF8

en_US.utf8

en_US.utf8

None

postgres

gpadmin

UTF8

en_US.utf8

en_US.utf8

None

template0

gpadmin

UTF8

en_US.utf8

en_US.utf8

=c/gpadmin

gpadmin=CTc/gpadmin

template1

gpadmin

UTF8

en_US.utf8

en_US.utf8

=c/gpadmin
gpadmin=CTc/gpadmin

 

 

 
(3-2) Schema 조회 : %sql \dn
 

 

%sql \dn

 

[Out]

Name Owner
gp_toolkit gpadmin
madlib dsuser14
public gpadmin

 

 

 

 
(3-3) Table 조회 : %sql \dt
 
아래 예제는 public 스키마에서 "ab" 로 시작하는 모든 테이블(public.ab*)을 조회한 것입니다.
 

 

%sql \dt public.ab*

 

[Out]

Schema Name Type Owner
public abalone table

gpadmin

public abalone_corr table

gpadmin

public abalone_corr_summary table

gpadmin

public abalone_correlations table

gpadmin

 

 

 

이상으로 ipython-sql, pgspecial 패키지를 사용해서 PostgreSQL, Greenplum database에 접속하고 SQL query, meta-commands 하는 방법에 대한 가장 기본적이고 개략적인 소개를 마치겠습니다.
 
* 다음번 포스팅에서는 SQLAlchemy, psycopg2, ipython-sql 로 Jupyter Notebook 에서 PostgreSQL, Greenplum database에 접속하는 4가지 방법(https://rfriend.tistory.com/577)에 대한 소소한 팁을 추가로 소개하겠습니다.
 
* ipython-sql 로 PostgreSQL, Greenplum database에 접속하여 Jupyter Notebook 의 로컬변수로 동적으로 SQL query 하는 3가지 방법https://rfriend.tistory.com/578 를 참고하세요.
 
* ipython-sql로 PostgreSQL, Greenplum database에 접속하여 Jupyter Notebook에서 SQL query한 결과를 pandas DataFrame으로 가져오는 3가지 방법https://rfriend.tistory.com/579 를 참고하세요.
 
이번 포스팅이 많은 도움이 되었기를 바랍니다.
행복한 데이터 과학자 되세요!

 

 

 

728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이번 포스팅에서는 공간지리 데이터 포맷 중에서 SHP, SHX, DBF, PRJ 로 이루어진 shape files 를 shp2pgsql 툴을 사용하여 PostgreSQL, Greenplum DB로 importing 하는 방법을 소개하겠습니다. 

 

PostgreSQL을 설치하였다면 바로 shp2pgsql 툴을 사용할 수 있습니다. 

 

 

예제 데이터셋은 https://github.com/PacktPublishing/Mastering-PostGIS/tree/master/Chapter01/data/ne_110m_coastline 에서 다운로드한 'ne_110m_coastline.shp', 'ne_110m_coastline.shx', 'ne_110m_coastline.dbf', 'ne_110m_coastline.prj' 의 4개 파일을 사용하였으며, 코드는 'Mastering PostGIS' (by Dominik Mikiewicz 외)를 참조하였습니다. 

 

shp2pgsql 은 (1) shapefile data를 import하는 SQL문을 만들어주고, (2) shapefile data를 import하는 SQL문을 바로 psql로 보내서 import 해주는 command-line utility 입니다.  말이 좀 어려운데요, 아래 예제를 직접 보면 이해가 쉬울 듯 합니다. 

 

Greenplum DB Docker 이미지에 PostGIS 설치해서 Greenplum 시작하는 방법은 https://rfriend.tistory.com/435 를 참고하세요. 

 

(1) shp2pgsql로 shapefile data를 import하는 SQL문 만들기

먼저, 명령 프롬프트 창에서 'ne_110m_coastline.shp', 'ne_110m_coastline.shx', 'ne_110m_coastline.dbf', 'ne_110m_coastline.prj'의 4개 shape files 를 docker cp 명령문을 사용하여 Greenplum docker의 gpdb-ds:/tmp 폴더로 복사하겠습니다. (만약 VMware를 이용해서 Greenplum DB를 설치해서 사용 중이라면 scp 명령문으로 GPDB 안으로 파일 복사)

-- (1) 명령 프롬프트 창에서 shape files 를 docker gpdb-ds:/tmp 경로로 복사 

ihongdon-ui-MacBook-Pro:~ ihongdon$

ihongdon-ui-MacBook-Pro:~ ihongdon$ cd /Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ ls

ne_110m_coastline.dbf ne_110m_coastline.prj ne_110m_coastline.shp ne_110m_coastline.shx

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ docker cp 
/Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/ne_110m_coastline.shp   
  gpdb-ds:/tmp

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ docker cp 
/Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/ne_110m_coastline.dbf  
  gpdb-ds:/tmp

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ docker cp 
/Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/ne_110m_coastline.shx  
  gpdb-ds:/tmp

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ docker cp 
/Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/ne_110m_coastline.prj  
  gpdb-ds:/tmp

 

다른 명령 프롬프트 창에서 GPDB에 4개의 shape files 이 잘 들어갔는지 확인해보겠습니다. 

[gpadmin@mdw /]$

[gpadmin@mdw /]$ cd tmp

[gpadmin@mdw tmp]$ ls -la

total 123532

drwxrwxrwt  1 root    root        4096 Apr 10 13:13 .

drwxr-xr-x  1 root    root        4096 Apr  9 07:11 ..

drwxrwxrwt  2 root    root        4096 Sep 11  2017 .ICE-unix

drwxrwxrwt  2 root    root        4096 Sep 11  2017 .Test-unix

drwxrwxrwt  2 root    root        4096 Sep 11  2017 .X11-unix

drwxrwxrwt  2 root    root        4096 Sep 11  2017 .XIM-unix

drwxrwxrwt  2 root    root        4096 Sep 11  2017 .font-unix

-rw-r--r--  1     501 games       3179 Apr  8 06:02 ne_110m_coastline.dbf

-rw-r--r--  1     501 games        147 Apr  8 06:03 ne_110m_coastline.prj

-rw-r--r--  1     501 games      89652 Apr  8 06:03 ne_110m_coastline.shp

-rw-r--r--  1     501 games       1172 Apr  8 06:04 ne_110m_coastline.shx

[gpadmin@mdw tmp]$

 

이제 shp2pgsql 유틸리티를 이용해서 data_import.ne_110m_coastline.sql 라는 이름의 ne_coastline shape files 를 import 하는 SQL 문을 만들어보겠습니다. 

-- (2) 명령 프롬프트 창 docker gpdb-ds의 gpadmin@mdw 에서 shp2pgsql 실행하여 sql 생성

[gpadmin@mdw tmp]$ shp2pgsql -s 4326 ne_110m_coastline data_import.ne_coastline  > data_import.ne_coastline.sql

Shapefile type: Arc

Postgis type: MULTILINESTRING[2]

[gpadmin@mdw tmp]$

[gpadmin@mdw tmp]$ ls -la
total 123532
drwxrwxrwt  1 root    root        4096 Apr 10 13:13 .
drwxr-xr-x  1 root    root        4096 Apr  9 07:11 ..
drwxrwxrwt  2 root    root        4096 Sep 11  2017 .ICE-unix
drwxrwxrwt  2 root    root        4096 Sep 11  2017 .Test-unix
drwxrwxrwt  2 root    root        4096 Sep 11  2017 .X11-unix
drwxrwxrwt  2 root    root        4096 Sep 11  2017 .XIM-unix
drwxrwxrwt  2 root    root        4096 Sep 11  2017 .font-unix
-rw-rw-r--  1 gpadmin gpadmin   184004 Apr  8 08:03 data_import.ne_coastline.sql
-rw-r--r--  1     501 games       3179 Apr  8 06:02 ne_110m_coastline.dbf
-rw-r--r--  1     501 games        147 Apr  8 06:03 ne_110m_coastline.prj
-rw-r--r--  1     501 games      89652 Apr  8 06:03 ne_110m_coastline.shp
-rw-r--r--  1     501 games       1172 Apr  8 06:04 ne_110m_coastline.shx
[gpadmin@mdw tmp]$

 

다른 명령 프롬프트 창에서 docker GPDB에 만들어진 data_import.ne_coastline.sql 파일을 로컬로 복사해서 SQL 문이 어떻게 생겼는지 눈으로 확인을 해보겠습니다. 아래에 보는 바와 같이 CREATE TABLE "data_import"."ne_coastline" (gid serial, scalerank numeric(10,0), featurecla varchar(12)); ALTER TABLE data_import.ne_coastline ADD PRIMARY KEY (gid); SELECT AddGeometryColumn(data_import.ne_coastline, geom, 4326, MULTILINESTRING, 2); INSERT INTO data_import.ne_coastline VALUES (); 와 같이 우리가 이미 알고 있는 테이블 생성과 데이터 삽입 표준 SQL query 문이 자동으로 만들어졌음을 확인할 수 있습니다.  이 SQL 문을 실행하면 테이블 생성부터 데이터 importing까지 일괄로 수행이 됩니다. 

 

* SQL 파일 첨부 : 

data_import.ne_coastline.sql.txt
0.18MB

-- (3) (optional) 다른 명령 프롬프트 창에서 gpdb-ds:/tmp/data_import.ne_coastline.sql 를 docker gpdb에서 밖으로 복사하여 sql query 확인해 보기

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$ docker cp  gpdb-ds:/tmp/data_import.ne_coastline.sql /Users/ihongdon/Documents/PostGIS/data/ne_110m_coastline/

ihongdon-ui-MacBook-Pro:ne_110m_coastline ihongdon$

 

 

-- sql query문을 열어서 확인해보면 아래와 같음

SET CLIENT_ENCODING TO UTF8;

SET STANDARD_CONFORMING_STRINGS TO ON;

BEGIN;

CREATE TABLE "data_import"."ne_coastline" (gid serial,

"scalerank" numeric(10,0),

"featurecla" varchar(12));

ALTER TABLE "data_import"."ne_coastline" ADD PRIMARY KEY (gid);

SELECT AddGeometryColumn('data_import','ne_coastline','geom','4326','MULTILINESTRING',2);

INSERT INTO "data_import"."ne_coastline" ("scalerank","featurecla",geom) VALUES ('1','Coastline','0105000020E61000000100000001020000000B000000BFA9980AD07664C095CA366A1FA653C04B24ADB8626364C0700E7B2E4B8E53C03EE93FF8D72764C0BF309DD0549853C02960B7EFE00764C02CDFE4B164AC53C07CB8A9DB6FEF63C08FDFE431F7C253C0A4D39170A9E663C089F492F9CEDF53C09E264A4F152464C0165BF9DF96E853C0FB978739134E64C026353A8703D253C01A655486E06064C0C3343A0771BB53C0B2C4809F216264C0974C8585ADB753C0BFA9980AD07664C095CA366A1FA653C0');

INSERT INTO "data_import"."ne_coastline" ("scalerank","featurecla",geom) VALUES ('0','Coastline','0105000020E61000000100000001020000000C000000D0347456A2CA18C05BC1C65E0CEF4A403FFBA3ECC62118C08AB5EFBA9B934A4010BA8804CA271BC09650268B4B214A40D09F77358C1F21C036A1DEA9ABD5494040720A9544F423C08AA1DEA904E9494088D170FB225522C0BCBB2928AC6E4A40088BF249866023C04F137F7DD0F04A40F0F906F8EDA720C07E8CF6F40E554B40D08D1B64E6491EC028FE33FFD8904B4040B24E9775EF1AC0BA12E24620964B40B0E392DBD5A516C0BAA0A43CFD464B40D0347456A2CA18C05BC1C65E0CEF4A40');

 

.... 너무 길어서 중간 생략함 .....

 

INSERT INTO "data_import"."ne_coastline" ("scalerank","featurecla",geom) VALUES ('0','Coastline','0105000020E6100000010000000102000000840000008881E7DEC36147C090CC237F30A85440A4E4D53906B445C084177D0569CE5440E0965643E2F243C02AD9B11188CB544044C49448A24F43C09E779CA223E354405026FC523F8B41C0C8EA56CF49E95440608E1EBFB7193BC08842041C42E15440905DA27A6BD834C02615C61682AE5440F8B7921D1BB136C06C2BF697DD955440E0B298D87C843AC0E2E995B20C9354405866666666E63FC0CCCCCCCCCC8C5440102C0E677E653FC094E34EE96081544098CADB114EDB3BC0149161156F88544050205ED72FD838C0B83B6BB75D7254408821AB5B3DE736C0F8BD4D7FF6855440E87C3F355E1236C04C4F58E2016F544020139B8F6B2B37C06CF12900C6495440F8CD3637A69F34C0FAB4C35F9361544000E292E34E892FC00C4FAF94657A544010117008558A29C0B22E6EA3016E54404029CB10C76A28C0765E6397A852544048910A630B4930C0CA9717601F2554408899999999D930C06A6666666616544058C47762D60B34C0AA315A47550B544040A2B437F8BA31C09E508880430854406066666666E632C09C99999999D95340D00182397AB433C0E288B5F814B05340F8DF4A766CAC33C05E6397A8DE685340E0E995B20C7932C05CD3BCE3143F5340F860E0B9F70834C07E130A11703C53402098A3C7EFAD35C07E6132553028534018938C9C85D533C0141956F146065340A89C4B71559933C0C03E3A75E5CF524058D72FD80DAB34C03C454772F9C95240309FE579705F33C0BA973446EB92524018A14ACD1E9835C0340C1F11538E5240C8CD70033E6F34C028A5A0DB4B745240B86ED8B628C334C084640113B85D5240480B5EF4152C36C0849ECDAACF53524040D3D9C9E09037C0427E6FD39F535240E00C1AFA275036C0BA019F1F4628524008D847A7AE4C36C052616C21C80B5240302B4D4A414738C0ACBB79AA432652403809336DFFCA38C0EA482EFF21155240A86F99D3657137C0A49C685721055240E8940ED6FF2136C09A9EB0C403DE5140E892E34EE9C035C0AC2B9FE579AA5140B8AC1743398937C0A21A2FDD249E5140C037DBDC984E38C07CD66EBBD0B65140C851F2EA1C8B39C074A25D8594DB5140B00C71AC8B3339C0B685200725B05140084CE0D6DD5C3AC08C7615527E8E5140C874763238BA37C0C408E1D1C68B514068A6ED5F595936C0FC88981249885140F8C01C3D7E0739C01E0DE02D90505140E802ECA353BF3BC0DE8442041C1E5140F8FC304278AC3EC03641D47D000851403870CE88D2C63FC0B28009DCBA075140DCB5847CD06740C01C4CC3F011EF5040D48C45D3D91941C01C7233DC80AB5040385C72DC292D42C07A832F4CA67E5040041C42959A8542C04287F9F2027C5040B42E6EA3013043C028A5A0DB4B6C50401C9430D3F6E743C0B0777FBC575D5040E8ACDD76A15544C0C4E78711C2355040DCB06D51665744C05A5F24B4E5085040A8605452279844C064D0D03FC1BD4F40887F9F71E16845C03C8AE59656574F4094C6681D553545C01CFE9AAC51F34E40A00F5D50DF6E45C0444C89247A894E40386744696FB045C02015C616820C4E40C4CCCCCCCC6446C088E63A8DB4044E406CF59CF4BE2147C0642A6F47386D4E40B8679604A82148C0E4F3C308E16D4E4004ADC090D59D48C0D0D79E5912B44E4098D2C1FA3FF348C01C4CC3F011314F408C1804560ED149C08CC43D963ED04F40446E861BF0114AC05AA31EA2D11150404C33164D67234AC0024D840D4F4B504024895E46B1D44AC0686AD95A5F865040C0120F289BA64AC0AAC64B3789B55040F81CE6CB0BFC4AC05851836918CC5040CC7F48BF7D7D4AC01AD82AC1E2165140C4E9B298D8BC49C034F44F70B12E5140C022F8DF4A8A49C0660113B87549514078CF0F23846F49C0AEADD85F767B5140A85B3D27BD014AC0CA293A92CB64514064E42CEC69474AC046B79734465B5140F0BEF1B567BA4AC0FCD478E92652514080B2295778574BC00EE544BB0A67514028D6E25300604BC00A850838849251408C3F1878EE2D4BC0BA2DCA6C90B4514018A3755435B74AC0FE1D8A027DB55140406E861BF0B149C08E7A884677A45140F0940ED6FF8D4AC078A52C431CCD51409CFEEC478A004BC0B4AC342905E35140F8FFFFFFFF7F4BC040C3A0B304DA5140045053CBD6EA4BC06E4C4F58E2E95140342861A6ED5B4BC0F051B81E852552402CB05582C5A94BC09AE7C1DD593D5240FC449E245D0F4CC000FBE8D495695240940035B56CA94CC010EA5BE674AD5240344A5E9D634C4DC0C24351A04FC65240AC76DB85E64A4DC0EC4CA1F31AE1524074B0FECF61A24EC0EEF0D7648D06534034BD529621B24FC098900F7A360B53404C07EBFF1C8450C07C62D68BA108534068300DC3472051C072693524EE035340B8AF03E78C6A51C0FAA9F1D24D1853407416F6B4C3D951C0826E2F698C4053407A1EDC9DB53151C0C22B82FFAD54534004486DE2E4B050C09CBB96900F5853401C81785DBFC251C00EF9A067B36853405CBA490C025352C0DE334B02D4825340B8E82B48334A52C0C0A94885B19B53403E2CD49AE65751C0FA1D8A027DBA53401851DA1B7C6D50C072B6B9313DD9534028CB10C7BA5450C08872A25D85F05340921D1B81780151C0EA305F5E800754408C8D40BCAEC950C0DAA7E331032154404C62105839D84FC0BCA94885B14D5440E86F4221021E4FC0B6AF03E78C545440543BFC3559534FC0CE0BB08F4E71544034B9DFA128244EC0868A71FE26825440E8F0D7648D9A4CC082828B15358C5440D0F6AFAC34114BC028E8F692C68C54401849F4328A854AC092831266DA785440C8BE2B82FF3149C03AA06CCA159C54409CE1067C7E0048C00E9DD7D825845440906A9F8EC74C47C0E6A90EB9197F544070E7FBA9F14246C0E81DA7E8486A5440ECC039234A7347C05A04FF5BC98C54408881E7DEC36147C090CC237F30A85440');

INSERT INTO "data_import"."ne_coastline" ("scalerank","featurecla",geom) VALUES ('3','Country','0105000020E6100000010000000102000000060000006666666666A65AC06766666666665240713D0AD7A3505AC0295C8FC2F56852400000000000205AC07B14AE47E15A5240B91E85EB51585AC0713D0AD7A33052405C8FC2F528BC5AC03E0AD7A3705D52406666666666A65AC06766666666665240');

COMMIT;

 

 

 

(2) shp2pgsql로 shapefile data를 import하는 SQL문을 psql로 보내서 import하기

Greenplum docker 명령 프롬프트 창에서 shp2pgsql 유틸리티를 사용해서 (1)번에서 만든 SQL문을 psql로 보내서 실행시켜 보겠습니다. (아래에서 각자 자신의 Greenplum DB 혹은 PostgreSQL DB의 host(-h), port(-p), user(-U), database(-d) 이름을 설정해 줌)

[gpadmin@mdw tmp]$ shp2pgsql -s 4326 ne_110m_coastline data_import.ne_coastline 
| psql -h localhost -p 5432 -U gpadmin -d gpadmin

Shapefile type: Arc
Postgis type: MULTILINESTRING[2]
SET
SET
BEGIN
NOTICE:  CREATE TABLE will create implicit sequence "ne_coastline_gid_seq" for serial column "ne_coastline.gid"
NOTICE:  Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'gid' as the Greenplum Database data distribution key for this table.
HINT:  The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
NOTICE:  ALTER TABLE / ADD PRIMARY KEY will create implicit index "ne_coastline_pkey" for table "ne_coastline"
ALTER TABLE
                          addgeometrycolumn
----------------------------------------------------------------------
 data_import.ne_coastline.geom SRID:4326 TYPE:MULTILINESTRING DIMS:2
(1 row)

INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1

.... 중간 생략함 ....

INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
COMMIT
[gpadmin@mdw tmp]$

 

마지막으로, DBeaver db tool로 가서 SELECT 문으로 데이터가 잘 들어갔는지 조회를 해보겠습니다. 해안선(coastline)을 MULTILINESTRING 공간지리 데이터 포맷으로 저장해놓은 데이터셋이군요. 

 

SELECT * FROM data_import.ne_coastline ORDER BY gid LIMIT 10;

 

이중에서 첫번째 gid의 geom만 가져다 살펴보면 아래에서 보는 것처럼 22개의 값으로 이루어져 있습니다. 

MULTILINESTRING ((-163.7128956777287 -78.59566741324154, -163.1058009511638 -78.22333871857859, -161.24511349184644 -78.38017669058443, -160.24620805564453 -78.69364592886694, -159.48240454815448 -79.04633757925897, -159.20818356019765 -79.4970077452764, -161.12760128481472 -79.63420867301133, -162.43984676821842 -79.28146534618699, -163.027407803377 -78.92877369579496, -163.06660437727038 -78.8699659158468, -163.7128956777287 -78.59566741324154))

 

많은 도움이 되었기를 바랍니다. 

728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

데이터 크기가 작다면 Python이나 R로 데이터를 로딩해서 직접 동일 간격 구간별 집계를 한다든지, 변수별 히스토그램이나 박스 그래프, 막대그래프를 그릴 수 있을 것입니다. 하지만 데이터 크기가 로컬 컴퓨터의 메모리 한계를 벗어날 정도로 크다면 그때는 DB에서 SQL로 집계를 한 후, 집계 결과만을 Python이나 R로 가져와서 시각화를 하는 방법을 생각해볼 수 있습니다. 

이번 포스팅에서는 

(1) Greenplum DB, PostgreSQL DB의 width_bucket() SQL 함수를 사용하여 동일 간격 범위별로 관측치 개수를 세어보고, 

(2) Python에서 width_bucket() SQL Query를 재사용하기 쉽게 사용자 정의 함수(user defined function)을 정의하여, 

(3) Python으로 DB connect하여 GPDB에서 집계한 결과로 막대 그래프 그리는 방법

을 소개하겠습니다. 

먼저, 예제로 사용할 간단한 houses (세금, 화장실 개수, 욕실 개수, 가격, 크기) 데이터를 DBeaver나 PGadmin IV 등의 DB tool을 사용해서 테이블을 생성하고 insert into 해보겠습니다. 

DROP TABLE IF EXISTS houses;

CREATE TABLE houses (id INT, tax INT, bedroom INT, bath FLOAT, price INT,

            size INT, lot INT);

INSERT INTO houses VALUES

  (1 ,  590 ,       2 ,    1 ,  50000 ,  770 , 22100),

  (2 , 1050 ,       3 ,    2 ,  85000 , 1410 , 12000),

  (3 ,   20 ,       3 ,    1 ,  22500 , 1060 ,  3500),

  (4 ,  870 ,       2 ,    2 ,  90000 , 1300 , 17500),

  (5 , 1320 ,       3 ,    2 , 133000 , 1500 , 30000),

  (6 , 1350 ,       2 ,    1 ,  90500 ,  820 , 25700),

  (7 , 2790 ,       3 ,  2.5 , 260000 , 2130 , 25000),

  (8 ,  680 ,       2 ,    1 , 142500 , 1170 , 22000),

  (9 , 1840 ,       3 ,    2 , 160000 , 1500 , 19000),

 (10 , 3680 ,       4 ,    2 , 240000 , 2790 , 20000),

 (11 , 1660 ,       3 ,    1 ,  87000 , 1030 , 17500),

 (12 , 1620 ,       3 ,    2 , 118600 , 1250 , 20000),

 (13 , 3100 ,       3 ,    2 , 140000 , 1760 , 38000),

 (14 , 2070 ,       2 ,    3 , 148000 , 1550 , 14000),

 (15 ,  650 ,       3 ,  1.5 ,  65000 , 1450 , 12000);


SELECT * FROM houses;



1. Greenplum DB, PostgreSQL DB의 width_bucket() SQL 함수를 사용하여 
    동일 간격 범위별로 관측치 개수를 세기


houses 테이블에서 가격(price) 변수의 최소값은 $22,500, 평균은 $122,140, 최대값은 $260,000 이군요. 

SELECT 

min(price) AS min_val,  

avg(price) AS mean,

max(price) AS max_val

FROM houses


위에서는 SQL문의 min(), avg(), max() 함수를 써서 이들 통계량을 구했는데요, 경우에 따라서는 동일 간격의 범위/ 구간별로 관측치가 몇 개 있는지를 구해보고 싶은 경우가 있습니다. (<- 히스토그램으로 시각화를 하죠)  SQL 문으로 하려면 width_bucket() 함수를 사용하면 case when 문을 길게 쓰지 않고도 간편하게 '동일 간격 범위의 bucket 별로 관측치를 집계'할 수 있습니다. 

houses 테이블의 price 칼럼에 대해 5개의 동일 간격(즉, 4개의 cutting line을 사용)의 bucket별로 관측치를 세어(count) 보겠습니다. width_bucket(변수, 시작 값, 끝 값, cutting line 개수) 의 순서로 arguments를 넣어주면 되며, 이렇게 만든 bucket 별로 count(*) 하고, GROUP BY bucket 으로 그룹별 묶어주면 됩니다. 

SELECT 

width_bucket(price, 22500, 260000, 4) AS bucket, 

count(*) AS cnt

FROM houses

GROUP BY bucket

ORDER BY bucket;


그런데, 위의 집계 결과를 보면 각 bucket의 구간이 어떻게 되는지 표만 봐서는 알 수 없어서 좀 갑갑한 면이 있습니다. 그래서 이번에는 각 bucket의 구간의 시작(from_val)과 끝(to_val)의 값을 같이 볼 수 있도록 해보겠습니다. 그리고 width_bucket(변수, 시작 값, 끝 값, cutting line 개수) 에서 '시작 값(starting point)'과 '끝 값(ending point)'을 수작업으로 직접 입력해주는 것이 아니라 해당 변수의 최소값과 최대값을 min(), max() 함수로 구해서 자동으로 입력해줄 수 있도록 with clause SQL문을 사용해서 짜보겠습니다. 

WITH stats AS (

SELECT 

min(price) AS min_val

max(price) AS max_val

FROM houses

), bucket_tbl AS (

SELECT 

width_bucket(price, min_val, max_val, 4) AS bucket, 

count(*) AS cnt

FROM houses, stats

GROUP BY bucket

ORDER BY bucket

)

SELECT 

bucket, 

min_val + (bucket-1)*min_val AS from_val, 

min_val + bucket*min_val AS to_val, 

cnt

FROM stats, bucket_tbl;



처음보다 훨씬 보기에 좋아졌습니다. 그렇지요?! 

여기까지 짜보았으니 이제 슬슬 더 욕심이 나기 시작합니다. DB에서 SQL로 bucket 별 관측치 개수를 집계할 결과를 Python이나 R로 가져와서 시각화를 해보면 더 가독성이 좋아질텐데....., 위의 SQL문을 사용자 정의 함수로 만들어서 table이름, 변수이름, bucket 개수 입력값만 바꾸어주면 알아서 집계를 해주면 더 편할텐데.... 하는 욕심 말이지요. 

그래서, Python으로 Greenplum 이나 PoesgreSQL DB에 connect하여 위의 width_bucket() SQL문을 사용자 정의 함수로 만들고, DB에서 집계한 결과를 pandas의 DataFrame.plot.bar() 함수로 시각화해보겠습니다. 



2. Python에서 width_bucket() SQL Query를 재사용하기 쉽게
    사용자 정의 함수(user defined function)을 정의


여기서부터는 Jupyter Notebook이나 Spyder 와 같은 Python IDE에서 진행하면 됩니다. (저는 Jupyter Notebook을 사용하였습니다)

아래 Python 코드는 psycopg2 라이브러리를 사용해서 Greenplum DB 혹은 PostgreSQL DB에 접속하고, Query문을 받아서 실행시킨 후에, 그 결과를 pandas DataFrame으로 반환하는 사용자 정의 함수 read_sql() 함수를 정의한 것입니다. 


import pandas as pd

import matplotlib as plt

%matplotlib inline


# UDF for GPDB connection and Querying, Save to pandas DataFrame

def read_sql(query):

     import pandas as pd

     import psycopg2 as pg


    # DB Connection (put it with yours)

     conn = pg.connect(host='localhost', 

                       port='5432', 

                       dbname='postgres', 

                       user='postgres', 

                       password='postgres')

     # Get a DataFrame

     result = pd.read_sql(query, conn)

     conn.close()

     return result 





위에서 정의한 read_sql() 사용자 정의함수를 사용해서 5개 bucket 별로 관측치 개수를 집계한 SQL query문을 날려보겠습니다. SQL query문은 따옴표 3개 (""" sql query syntax """) 안에 써주면 됩니다. read_sql() 사용자 정의 함수가 잘 작동하는군요. 

 


 query = """

    WITH stats AS (

        SELECT 

            min(price) AS min_val, 

            max(price) AS max_val

        FROM houses

    ), bucket_tbl AS (

        SELECT 

        width_bucket(price, min_val, max_val, 4) AS bucket, 

        count(*) AS cnt

    FROM houses, stats

    GROUP BY bucket

    ORDER BY bucket

    )

    SELECT

        'price' AS column,

        bucket, 

        min_val + (bucket-1)*min_val AS range_low, 

        min_val + bucket*min_val AS range_high, 

        cnt

    FROM stats, bucket_tbl;

"""


rng_bucket = read_sql(query)

rng_bucket

columnbucketrange_lowrange_highcnt
0price122500450003
1price245000675007
2price367500900003
3price4900001125001
4price51125001350001




이제 위의 구슬들을 잘 꿰어서 진주 목걸이를 만들 차례가 되었습니다. Python의 format() 문을 접목하여 동일 간격 bucket 별로 관측치 개수를 집계하는 SQL query 문의 테이블 이름(tbl_nm), 변수 이름(var_nm), bucket 개수(bucket_num) 의 3개 인자를 받는 Python 사용자 정의 함수 rng_bucket(tbl_nm, var_nm, bucket_num)를 만들어보겠습니다. 


def rng_bucket(tbl_nm, var_nm, bucket_num=10):

    

    query = """

    WITH stats AS (

        SELECT 

            min({var_nm}) AS min_val, 

            max({var_nm}) AS max_val

        FROM {tbl_nm}

    ), bucket_tbl AS (

        SELECT 

        width_bucket({var_nm}, min_val, max_val, ({bucket_num}-1)) AS bucket, 

        count(*) AS cnt

    FROM {tbl_nm}, stats

    GROUP BY bucket

    ORDER BY bucket

    )

    SELECT 

        '{var_nm}' AS column,

        bucket, 

        min_val + (bucket-1)*min_val AS range_low, 

        min_val + bucket*min_val AS range_high, 

        cnt

    FROM stats, bucket_tbl

    ORDER BY bucket

    """.format(tbl_nm = tbl_nm, 

              var_nm = var_nm, 

              bucket_num = bucket_num)

    

    rng_bucket = read_sql(query)

    

    return rng_bucket;

 



목걸이로 다 꿰었으니 이제 rng_bucket() 사용자 정의 함수에 'price' 변수에 대해 bucket 개수를 5개, 10개로 넣어서 실행시켜 보고, 변수 이름을 'price' 대신 'tax'를 넣어서도 실행시켜 보겠습니다. 


rng_bucket('houses', 'price', 5)

columnbucketrange_lowrange_highcnt
0price122500450003
1price245000675007
2price367500900003
3price4900001125001
4price51125001350001

 

rng_bucket('houses', 'price', 10)

columnbucketrange_lowrange_highcnt
0price122500450001
1price245000675002
2price367500900004
3price4900001125001
4price51125001350004
5price61350001575001
6price92025002250001
7price102250002475001


rng_bucket('houses', 'tax', 5)

columnbucketrange_lowrange_highcnt
0tax120405
1tax240606
2tax360801
3tax4801002
4tax51001201


잘 동작하는군요! ^^


 3. Python으로 DB connect하여 GPDB에서 집계한 결과로 막대 그래프 그리기

마지막으로, pandas DataFrame으로 반환받은 세금(tax) 변수의 5개 bucket 별 집계 결과를 pandas 막대그래프(bar graph)로 그려보겠습니다. 


tax_bucket = rng_bucket('houses', 'price', 5)

ax = tax_bucket.plot.bar(x='bucket', y='cnt', rot=0)



요약하자면, 데이터 사이즈가 수백 테라바이트, 수 페타바이트급이면 Greenplum, PostgreSQL DB에서 집계하시구요, 결과는 Python이나 R로 시각화해서 보세요. 자주 쓰는 코드라면 사용자 정의 함수를 만들어놓고 재사용하시구요. 


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
Posted by R Friend Rfriend

댓글을 달아 주세요