지난번 포스팅에서는 샘플 크기가 다른 2개 이상의 집단에 대해 평균의 차이가 존재하는지를 검정하는 일원분산분석(one-way ANOVA)에 대해 scipy 모듈의 scipy.stats.f_oneway() 메소드를 사용해서 분석하는 방법(rfriend.tistory.com/638)을 소개하였습니다. 

 

이번 포스팅에서는 2개 이상의 집단에 대해 pandas DataFrame에 들어있는 여러 개의 숫자형 변수(one-way ANOVA for multiple numeric variables in pandas DataFrame) 별로 일원분산분석 검정(one-way ANOVA test)을 하는 방법을 소개하겠습니다. 

 

숫자형 변수와 집단 변수의 모든 가능한 조합을 MultiIndex 로 만들어서 statsmodels.api 모듈의 stats.anova_lm() 메소드의 모델에 for loop 순환문으로 변수를 바꾸어 가면서 ANOVA 검정을 하도록 작성하였습니다. 

 

 

 

먼저, 3개의 집단('grp 1', 'grp 2', 'grp 3')을 별로 'x1', 'x2', 'x3, 'x4' 의 4개의 숫자형 변수를 각각 30개씩 가지는 가상의 pandas DataFrame을 만들어보겠습니다. 이때 숫자형 변수는 모두 정규분포로 부터 난수를 발생시켜 생성하였으며, 'x3'와 'x4'에 대해서는 집단3 ('grp 3') 의 평균이 다른 2개 집단의 평균과는 다른 정규분포로 부터 난수를 발생시켜 생성하였습니다.  

 

아래의 가상 데이터셋은 결측값이 없이 만들었습니다만, 실제 기업에서 쓰는 데이터셋에는 혹시 결측값이 존재할 수도 있으므로 결측값을 없애거나 또는 결측값을 그룹 별 평균으로 대체한 후에 one-way ANOVA 를 실행하기 바랍니다. 

 

## Creating sample dataset
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# generate 90 IDs
id = np.arange(90) + 1

# Create 3 groups with 30 observations in each group.
from itertools import chain, repeat
grp = list(chain.from_iterable((repeat(number, 30) for number in [1, 2, 3])))

# generate random numbers per each groups from normal distribution
np.random.seed(1004)

# for 'x1' from group 1, 2 and 3
x1_g1 = np.random.normal(0, 1, 30)
x1_g2 = np.random.normal(0, 1, 30)
x1_g3 = np.random.normal(0, 1, 30)

# for 'x2' from group 1, 2 and 3
x2_g1 = np.random.normal(10, 1, 30)
x2_g2 = np.random.normal(10, 1, 30)
x2_g3 = np.random.normal(10, 1, 30)

# for 'x3' from group 1, 2 and 3
x3_g1 = np.random.normal(30, 1, 30)
x3_g2 = np.random.normal(30, 1, 30)
x3_g3 = np.random.normal(50, 1, 30) # different mean

x4_g1 = np.random.normal(50, 1, 30)
x4_g2 = np.random.normal(50, 1, 30)
x4_g3 = np.random.normal(20, 1, 30) # different mean

# make a DataFrame with all together
df = pd.DataFrame({'id': id, 
                   'grp': grp, 
                   'x1': np.concatenate([x1_g1, x1_g2, x1_g3]), 
                   'x2': np.concatenate([x2_g1, x2_g2, x2_g3]), 
                   'x3': np.concatenate([x3_g1, x3_g2, x3_g3]), 
                   'x4': np.concatenate([x4_g1, x4_g2, x4_g3])})
                   
df.head()
[Out] 

id	grp	x1	x2	x3	x4
0	1	1	0.594403	10.910982	29.431739	49.232193
1	2	1	0.402609	9.145831	28.548873	50.434544
2	3	1	-0.805162	9.714561	30.505179	49.459769
3	4	1	0.115126	8.885289	29.218484	50.040593
4	5	1	-0.753065	10.230208	30.072990	49.601211


df[df['grp'] == 3].head()
[Out] 

id	grp	x1	x2	x3	x4
60	61	3	-1.034244	11.751622	49.501195	20.363374
61	62	3	0.159294	10.043206	50.820755	19.800253
62	63	3	0.330536	9.967849	50.461775	20.993187
63	64	3	0.025636	9.430043	50.209187	17.892591
64	65	3	-0.092139	12.543271	51.795920	18.883919

 

 

 

가령, 'x3' 변수에 대해 집단별로 상자 그래프 (Box plot for 'x3' by groups) 를 그려보면, 아래와 같이 집단1과 집단2는 유사한 반면에 집단3은 평균이 차이가 많이 나게 가상의 샘플 데이터가 생성되었음을 알 수 있습니다. 

 

## Boxplot for 'x3' by 'grp'
plt.rcParams['figure.figsize'] = [10, 6]
sns.boxplot(x='grp', y='x3', data=df)
plt.show()

 

 

여러개의 변수에 대해 일원분산분석을 하기 전에, 먼저 이해를 돕기 위해 Python의 statsmodels.api 모듈의 stats.anova_lm() 메소드를 사용해서 'x1' 변수에 대해 집단(집단 1/2/3)별로 평균이 같은지 일원분산분석으로 검정을 해보겠습니다. 

 

    - 귀무가설(H0) : 집단1의 x1 평균 = 집단2의 x1 평균 = 집단3의 x1 평균

    - 대립가설(H1) : 적어도 1개 이상의 집단의 x1 평균이 다른 집단의 평균과 다르다. (Not H0)

 

# ANOVA for x1 and grp
import statsmodels.api as sm
from statsmodels.formula.api import ols

model = ols('x1 ~ grp', data=df).fit()
sm.stats.anova_lm(model, typ=1)
[Out]

df	sum_sq	mean_sq	F	PR(>F)
grp	1.0	0.235732	0.235732	0.221365	0.639166
Residual	88.0	93.711314	1.064901	NaN	NaN

 

일원분산분석 결과 F 통계량이 0.221365, p-value가 0.639 로서 유의수준 5% 하에서 귀무가설을 채택합니다. 즉, 3개 집단 간 x1의 평균의 차이는 없다고 판단할 수 있습니다. (정규분포 X ~ N(0, 1) 를 따르는 모집단으로 부터 무작위로 3개 집단의 샘플을 추출했으므로 차이가 없게 나오는게 맞겠습니다.)

 

 

한개의 변수에 대한 일원분산분석하는 방법을 알아보았으니, 다음으로는 3개 집단별로 여러개의 연속형 변수인 'x1', 'x2', 'x3', 'x4' 에 대해서 for loop 순환문으로 돌아가면서 일원분산분석을 하고, 그 결과를 하나의 DataFrame에 모아보도록 하겠습니다. 

 

(1) 먼저, 일원분산분석을 하려는 모든 숫자형 변수와 집단 변수에 대한 가능한 조합의 MultiIndex 를 생성해줍니다. 

 

# make a multiindex for possible combinations of Xs and Group
num_col = ['x1','x2', 'x3', 'x4']
cat_col =  ['grp']
mult_idx = pd.MultiIndex.from_product([num_col, cat_col],
                                   names=['x', 'grp'])

print(mult_idx)
[Out]
MultiIndex([('x1', 'grp'),
            ('x2', 'grp'),
            ('x3', 'grp'),
            ('x4', 'grp')],
           names=['x', 'grp'])
           

 

 

(2) for loop 순환문(for x, grp in mult_idx:)으로 model = ols('{} ~ {}'.format(x, grp) 의 선형모델의  y, x 부분의 변수 이름을 바꾸어가면서 sm.stats.anova_lm(model, typ=1) 로 일원분산분석을 수행합니다. 이렇게 해서 나온 일원분산분석 결과 테이블을 anova_tables.append(anova_table) 로 순차적으로 append 해나가면 됩니다.  

 

# ANOVA test for multiple combinations of X and Group
import statsmodels.api as sm
from statsmodels.formula.api import ols

anova_tables = []
for x, grp in mult_idx:
    model = ols('{} ~ {}'.format(x, grp), data=df).fit()
    anova_table = sm.stats.anova_lm(model, typ=1)
    anova_tables.append(anova_table)

df_anova_tables = pd.concat(anova_tables, keys=mult_idx, axis=0)

df_anova_tables
[Out]

df	sum_sq	mean_sq	F	PR(>F)
x1	grp	grp	1.0	0.235732	0.235732	0.221365	6.391661e-01
Residual	88.0	93.711314	1.064901	NaN	NaN
x2	grp	grp	1.0	0.448662	0.448662	0.415853	5.206912e-01
Residual	88.0	94.942885	1.078896	NaN	NaN
x3	grp	grp	1.0	6375.876120	6375.876120	259.202952	5.779374e-28
Residual	88.0	2164.624651	24.598007	NaN	NaN
x4	grp	grp	1.0	13760.538009	13760.538009	256.515180	8.145953e-28
Residual	88.0	4720.684932	53.644147	NaN	NaN

anova tables

 

 

만약 특정 변수에 대한 일원분산분석 결과만을 조회하고 싶다면, 아래처럼 DataFrame의 MultiIndex 에 대해 인덱싱을 해오면 됩니다. 가령, 'x3' 에 대한 집단별 평균 차이 여부를 검정한 결과는 아래처럼 인덱싱해오면 됩니다. 

 

## Getting values of 'x3' from ANOVA tables
df_anova_tables.loc[('x3', 'grp', 'grp')]
[Out]

df         1.000000e+00
sum_sq     6.375876e+03
mean_sq    6.375876e+03
F          2.592030e+02
PR(>F)     5.779374e-28
Name: (x3, grp, grp), dtype: float64

 

 

F 통계량과 p-value 에 대해서 조회하고 싶으면 위의 결과에서 DataFrame 의 칼럼 이름으로 선택해오면 됩니다. 

 

# F-statistic
df_anova_tables.loc[('x3', 'grp', 'grp')]['F']
[Out]
259.2029515179077


# P-value
df_anova_tables.loc[('x3', 'grp', 'grp')]['PR(>F)']
[Out]
5.7793742588216585e-28

 

 

 

MultiIndex 를 인덱싱해오는게 좀 불편할 수 도 있는데요, 이럴 경우  df_anova_tables.reset_index() 로  MultiIndex 를 칼럼으로 변환해서 사용할 수도 있습니다. 

# resetting index to columns
df_anova_tables_2 = df_anova_tables.reset_index().dropna()


df_anova_tables_2
[Out]

level_0	level_1	level_2	df	sum_sq	mean_sq	F	PR(>F)
0	x1	grp	grp	1.0	0.235732	0.235732	0.221365	6.391661e-01
2	x2	grp	grp	1.0	0.448662	0.448662	0.415853	5.206912e-01
4	x3	grp	grp	1.0	6375.876120	6375.876120	259.202952	5.779374e-28
6	x4	grp	grp	1.0	13760.538009	13760.538009	256.515180	8.145953e-28

 

 

Greenplum DB에서 PL/Python (또는 PL/R)을 사용하여 여러개의 숫자형 변수에 대해 일원분산분석을 분산병렬처리하는 방법(one-way ANOVA in parallel using PL/Python on Greenplum DB)은 rfriend.tistory.com/640 를 참고하세요. 

 

 

[reference] 

* ANOVA test using Python statsmodels
 
: https://www.statsmodels.org/stable/generated/statsmodels.stats.anova.anova_lm.html

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요! :-)

 

728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이전 포스팅의  rfriend.tistory.com/262 에서는 Python pandas DataFrame의 결측값을 fillna() 메소드를 사용해서 특정 값으로 채우거나 평균으로 대체하는 방법을 소개하였습니다. 

 

이번 포스팅에서는 Python pandas DataFrame 의 결측값을 선형회귀모형(linear regression model) 을  사용하여 예측/추정하여 채워넣는 방법을 소개하겠습니다. (물론, 아래의 동일한 방법을 사용하여 선형회귀모형 말고 다른 통계, 기계학습 모형을 사용하여 예측/추정한 값으로 대체할 수 있습니다.)

 

(1) 결측값을 제외한 데이터로부터 선형회귀모형 훈련하기

    (training, fitting a linear regression model using non-missing values)

(2) 선형회귀모형으로 부터 추정값 계산하기 (prediction using linear regression model)

(3) pandas 의 fillna() 메소드 또는  numpy의  np.where()  메소드를 사용해서 결측값인 경우 선형회귀모형 추정값으로 대체하기 (filling missing values using the predicted values by linear regression model)

 

fill missing values of pandas DataFrame using predicted values by machine learning model

 

아래에는 예제로 사용할 데이터로 전복(abalone) 공개 데이터셋을 읽어와서 1행~3행의 'whole_weight' 칼럼 값을 결측값(NA) 으로 변환해주었습니다. 

import pandas as pd
import numpy as np

# read abalone dataset from website
abalone = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data", 
                 header=None, 
                 names=['sex', 'length', 'diameter', 'height', 
                          'whole_weight', 'shucked_weight', 
                          'viscera_weight', 'shell_weight', 'rings'])
                          

# get 10 observations as an example
df = abalone.copy()[:10]


# check missing values : no missing value at all
pd.isnull(df).sum()
# sex               0
# length            0
# diameter          0
# height            0
# whole_weight      0
# shucked_weight    0
# viscera_weight    0
# shell_weight      0
# rings             0
# dtype: int64


# insert NA values as an example
df.loc[0:2, 'whole_weight'] = np.nan

df
# sex	length	diameter	height	whole_weight	shucked_weight	viscera_weight	shell_weight	rings
# 0	M	0.455	0.365	0.095	NaN	0.2245	0.1010	0.150	15
# 1	M	0.350	0.265	0.090	NaN	0.0995	0.0485	0.070	7
# 2	F	0.530	0.420	0.135	NaN	0.2565	0.1415	0.210	9
# 3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
# 4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7
# 5	I	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.120	8
# 6	F	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.330	20
# 7	F	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.260	16
# 8	M	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.165	9
# 9	F	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.320	19

 

 

 

(1) 결측값을 제외한 데이터로부터 선형회귀모형 훈련하기  (training, fitting a linear regression model using non-missing values)

 

 pandas 패키지의 dropna() 메소드를 이용해서 결측값이 포함된 행을 제거한 후의 설명변수  ' diameter', 'height', 'shell_weight' 를 'X' DataFrame 객체로 만들고, ' whole_weight' 를 종속변수  'y' Series로 만든 후에,  sklearn의  linear_model.LinearRegression() 메소드로   lin_reg.fit(X, y) 로 선형회귀모형을 적합하였습니다. 

 

# initiate sklearn's linear regression
from sklearn import linear_model

lin_reg = linear_model.LinearRegression()


# X and y after excluding missing values
X = df.dropna(axis=0)[['diameter', 'height', 'shell_weight']] 
y = df.dropna(axis=0)['whole_weight'] 


# fitting linear regression model using non-missing values
lin_reg_model = lin_reg.fit(X, y)

 

 

 

(2) 선형회귀모형으로 부터 추정값 계산하기 (prediction using linear regression model)

 

위의 (1)번에서 적합한 모델에 predict() 함수를 사용해서  'whole_weight'  의 값을 추정하였습니다. 

 

# Prediction
y_pred = lin_reg_model.predict(df.loc[:, ['diameter', 'height', 'shell_weight']])

y_pred
# array([0.54856977, 0.21868994, 0.69091523, 0.50734984, 0.19206521,
#        0.35618402, 0.80347213, 0.7804138 , 0.53164895, 0.85086606])

 

 

 

(3) pandas 의 fillna() 메소드 또는  numpy의  np.where()  메소드를 사용해서 결측값인 경우 선형회귀모형 추정값으로 대체하기 (filling missing values using the predicted values by linear regression model)

 

(방법 1)  pandas  의  fillna()  메소드를 사용해서  'whole_weight' 값이 결측값인 경우에는  위의 (2)번에서 선형회귀모형을 이용해 추정한 값으로 대체를 합니다. 이때  'y_pred' 는  2D numpy array 형태이므로, 이를 flatten() 메소드를 사용해서  1D array 로 바꾸어주고, 이를  pd.Series() 메소드를 사용해서 Series 데이터 유형으로 변환을 해주었습니다.   inplace=True 옵션을 사용해서 df DataFrame 내에서 결측값이 선형회귀모형 추정값으로 대체되고 나서 저장되도록 하였습니다. 

 

(방법 2)  numpy의 where() 메소드를 사용해서,  결측값인 경우  (즉,  isnull() 이 True)  pd.Series(y_pred.flatten()) 값을 가져옥, 결측값이 아닌 경우 기존 값을 가져와서  'whole_weight' 에 값을 할당하도록 하였습니다. 

 

(방법 3) for loop 을 돌면서 매 행의  'whole_weight' 값이 결측값인지 여부를 확인 후,  만약  결측값이면 (isnull() 이 True 이면) 위의 (1)에서 적합된 회귀모형에 X값들을 넣어줘서 예측을 해서 결측값을 채워넣는 사용자 정의함수를 만들고 이를  apply() 함수로 적용하는 방법도 생각해볼 수는 있으나, 데이터 크기가 큰 경우  for loop 연산은 위의 (방법 1), (방법 2) 의   vectorized operation 대비 성능이 많이 뒤떨어지므로 소개는 생략합니다. 

 

## filling missing values using predicted values by a linear regression model

## -- (방법 1) pd.fillna() methods
df['whole_weight'].fillna(pd.Series(y_pred.flatten()), inplace=True)


## -- (방법 2) np.where()
df['whole_weight'] = np.where(df['whole_weight'].isnull(), 
                              pd.Series(y_pred.flatten()), 
                              df['whole_weight'])
                              
## results
df
# sex	length	diameter	height	whole_weight	shucked_weight	viscera_weight	shell_weight	rings
# 0	M	0.455	0.365	0.095	0.548570	0.2245	0.1010	0.150	15
# 1	M	0.350	0.265	0.090	0.218690	0.0995	0.0485	0.070	7
# 2	F	0.530	0.420	0.135	0.690915	0.2565	0.1415	0.210	9
# 3	M	0.440	0.365	0.125	0.516000	0.2155	0.1140	0.155	10
# 4	I	0.330	0.255	0.080	0.205000	0.0895	0.0395	0.055	7
# 5	I	0.425	0.300	0.095	0.351500	0.1410	0.0775	0.120	8
# 6	F	0.530	0.415	0.150	0.777500	0.2370	0.1415	0.330	20
# 7	F	0.545	0.425	0.125	0.768000	0.2940	0.1495	0.260	16
# 8	M	0.475	0.370	0.125	0.509500	0.2165	0.1125	0.165	9
# 9	F	0.550	0.440	0.150	0.894500	0.3145	0.1510	0.320	19

 

 

많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요! :-)

 

728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이전 포스팅에서는 무작위(확률, 임의) 표본 추출과 관련하여,

- numpy.random() 메소드를 이용하여 확률분포별 확률 표본 추출, 난수 생성: https://rfriend.tistory.com/284

- 그룹별 무작위 표본 추출: https://rfriend.tistory.com/407

- 기계학습을 위한 Train, Test 데이터셋 분할: https://rfriend.tistory.com/519

- 층화 무작위 추출을 통한 Train, Test 데이터셋 분할: https://rfriend.tistory.com/520

방법에 대하여 소개하였습니다.



이번 포스팅에서는 Python pandas 모듈의 DataFrame.sample() 메소드를 사용해서 DataFrame으로 부터 무작위 (확률, 임의) 표본 추출 (random sampling) 하는 방법을 소개하겠습니다.


(1) DataFrame으로 부터 특정 개수의 표본을 무작위로 추출하기 (number)

(2) DataFrame으로 부터 특정 비율의 표본을 무작위로 추출하기 (fraction)

(3) DataFrame으로 부터 복원 무작위 표본 추출하기 (random sampling with replacement)

(4) DataFrame으로 부터 가중치를 부여하여 표본 추출하기 (weights)

(5) DataFrame으로 부터 칼럼에 대해 무작위 표본 추출하기 (axis=1, axis='column)

(6) DataFrame으로 부터 특정 칼럼에 대해 무작위 표본 추출한 결과를 numpy array로 할당하기



[ pandas DataFrame에서 무작위 (확률) 표본 추출하기: pandas.DataFrame.sample() ]



  (1) DataFrame으로 부터 특정 개수의 표본을 무작위(확률)로 추출하기 (number)


예제로 사용할 4개의 관측치와 3개의 칼럼을 가진 pandas DataFrame을 만들어보겠습니다.

(참조 [1] 의 pandas tutorial 코드 사용하였습니다.)



import pandas as pd

df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
                   'num_wings': [2, 0, 0, 0],
                   'num_specimen_seen': [10, 2, 1, 8]},
                  index=['falcon', 'dog', 'spider', 'fish'])

df


num_legsnum_wingsnum_specimen_seen
falcon2210
dog402
spider801
fish008

 



DataFrame.sample() 메소드의 n 매개변수를 사용해서 특정 개수 (number)의 표본을 무작위로 추출할 수 있습니다. 그리고 random_state 매개변수는 무작위(확률) 표본 추출을 위한 난수(random number)를 생성할 때 초기값(seed number) 로서, 재현가능성(reproducibility)을 위해서 설정해줍니다.


아래 예에서는 총 4개 관측치 중에서 2개의 관측치 (n=2) 를 무작위 표본 추출해보았습니다. Index를 기준으로 n 개수 만큼 표본을 추출해서 모든 칼럼의 값을 pandas DataFrame 자료구조로 반환합니다.



df.sample(n=2, # number of items from axis to return.
          random_state=1004) # seed for random number generator for reproducibility



num_legsnum_wingsnum_specimen_seen
falcon2210
fish008

 




  (2) DataFrame으로 부터 특정 비율의 표본을 무작위로 추출하기 (fraction)


DataFrame으로 부터 특정 비율(fraction)으로 무작위 표본 추출을 하고 싶으면 frac 매개변수에 0~1 사이의 부동소수형(float) 값을 입력해주면 됩니다.



df.sample(frac=0.5, # fraction of axis items to return.
          random_state=1004)



num_legsnum_wingsnum_specimen_seen
falcon2210
fish008

 



만약 비복원 추출 모드 (replace = False, 기본 설정) 에서 frac 값이 1을 초과할 경우에는 "ValueError: Replace has to be set to 'True' when upsampling the population 'frac' > 1." 이라는 에러가 발생합니다. 왜냐하면 모집단의 표본 개수 (100%, frac=1) 보다 더 많은 표본을 비복원 추출로는 할 수 없기 때문입니다. (복원 추출의 경우 동일한 관측치를 다시 표본 추출할 수 있으므로 frac > 1 인 경우도 가능함.)



## ValueError: Replace has to be set to `True` when upsampling the population `frac` > 1.
df.sample(frac=1.5,
          random_state=1004)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-45-2fcc4494d7ae> in <module>
----> 1 df.sample(frac=1.5, # fraction of axis items to return. 
      2           random_state=1004)

~/opt/anaconda3/lib/python3.8/site-packages/pandas/core/generic.py in sample(self, n, frac, replace, weights, random_state, axis)
   5326             n = 1
   5327         elif frac is not None and frac > 1 and not replace:
-> 5328             raise ValueError(
   5329                 "Replace has to be set to `True` when "
   5330                 "upsampling the population `frac` > 1."

ValueError: Replace has to be set to `True` when upsampling the population `frac` > 1.

 



만약 DataFrame.sample() 메소드에서 표본 개수 n 과 표본추출 비율 frac 을 동시에 설정하게 되면 "ValueError: Please enter a value for 'frac' OR 'n', not both" 에러가 발생합니다. n 과 frac 둘 중에 하나만 입력해야 합니다.



## parameter 'n' and 'frac' cannot be used at the same time.
## ValueError: Please enter a value for `frac` OR `n`, not both
df.sample(n=2, frac=0.5)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-6-b31ebc150882> in <module>
      1 ## parameter 'n' and 'frac' cannot be used at the same time.
      2 ## ValueError: Please enter a value for `frac` OR `n`, not both
----> 3 df.sample(n=2, frac=0.5)

~/opt/anaconda3/lib/python3.8/site-packages/pandas/core/generic.py in sample(self, n, frac, replace, weights, random_state, axis)
   5335             n = int(round(frac * axis_length))
   5336         elif n is not None and frac is not None:
-> 5337             raise ValueError("Please enter a value for `frac` OR `n`, not both")
   5338 
   5339         # Check for negative sizes

ValueError: Please enter a value for `frac` OR `n`, not both

 




  (3) DataFrame으로 부터 복원 무작위 표본 추출하기

      (random sampling with replacement)


한번 추출한 표본을 다시 모집단에 되돌려 넣고 추출하는 방법을 복원 추출법 (sampling with replacement) 이라고 합니다. 복원 추출법을 사용하면 동일한 표본이 중복해서 나올 수 있습니다.


DataFrame.sample() 메소드에서는 repalce=True 로 설정하면 복원 추출을 할 수 있습니다. 많은 경우 한번 추출된 표본은 되돌려 놓지 않고 표본을 추출하는 비복원 추출(sampling without replacement)을 사용하며, 기본 설정은 replace=False 입니다.



## replace=True: random sampling with replacement
df.sample(n=8, # or equivalently: frac=2
          replace=True, # random sampling with replacement
          random_state=1004)



num_legsnum_wingsnum_specimen_seen
spider801
fish008
fish008
dog402
fish008
fish008
fish008
spider801

 



만약 비복원 추출 모드 (replace=False) 에서 원본 DataFrame 의 관측치 개수 (행의 개수) 보다 많은 수의 표본을 무작위 추출하고자 한다면 "ValueError: Cannot take a larger sample than population when 'replace=False'" 에러 메시지가 발생합니다.  모집단이 가지고 있는 관측치 수보다 더 많은 수의 표본을 중복이 없는 "비복원 추출"로는 불가능하기 때문입니다.

(복원추출(sampling with replacement, replace=True) 모드 에서는 동일한 표본을 중복 추출이 가능하므로 모집단 관측치 수보다 많은 수의 표본 추출이 가능함.)



## ValueError: Cannot take a larger sample than population when 'replace=False'
df.sample(n=8,
          replace=False # random sampling without replacement
)


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-42-40c76bd4c271> in <module>
      1 ## replace=True: random sampling with replacement
----> 2 df.sample(n=8, # or equivalently: frac=2
      3           replace=False # random sampling without replacement
      4 )

~/opt/anaconda3/lib/python3.8/site-packages/pandas/core/generic.py in sample(self, n, frac, replace, weights, random_state, axis)
   5343             )
   5344 
-> 5345         locs = rs.choice(axis_length, size=n, replace=replace, p=weights)
   5346         return self.take(locs, axis=axis)
   5347 

mtrand.pyx in numpy.random.mtrand.RandomState.choice()

ValueError: Cannot take a larger sample than population when 'replace=False'

 




  (4) DataFrame으로 부터 가중치를 부여하여 표본 추출하기 (weights)


만약에 DataFrame 내의 특정 칼럼의 값을 기준으로 가중치를 부여하여 무작위 표본 추출을 하고 싶다면 DataFrame.sample() 메소드의 weights 매개변수에 가중치로 사용할 칼럼 이름을 설정해주면 됩니다.


아래 예에서는 df DataFrame의 'num_specimen_seen' 칼럼의 값이 크면 클수록 표본으로 뽑힐 확률이 더 크도록 가중치(weights)를 부여해보았습니다. 아니나 다를까, 'num_specimen_seen' 값이 10, 8 인 falcon, fish가 표본으로 추출이 되었네요. 

(물론, 표본추출 시행을 계속 하다보면 num_specimen_seen 값이 1인 spider나 2인 dog 도 표본으로 뽑히는 때가 오긴 올겁니다. 다만, num_specimen_seen 값의 가중치로 인해 표본 추출될 확률이 낮아 상대적으로 작은 빈도로 추출이 되겠지요.)



## Using a DataFrame column as weights.
## Rows with larger value in the num_specimen_seen column are more likely to be sampled.
df.sample(n=2,
          weights='num_specimen_seen'

)



num_legsnum_wingsnum_specimen_seen
falcon2210
fish008

 




  (5) DataFrame으로 부터 칼럼에 대해 무작위 표본 추출하기 (axis=1, axis='column)


위의 (1) ~ (4) 까지는 axis=0, 즉 Index 에 대해서 무작위 표본 추출을 해서 전체 칼럼의 값을 반환하였습니다.


DataFrame.sample() 메소드의 axis 매개변수를 axis=1, 또는 axis='column' 으로 설정을 해주면 여러개의 칼럼에 대해서 무작위로 표본 추출을 해서 전체 행(all rows, random sampled columns) 을 반환합니다. (이런 요건의 분석은 그리 많지는 않을것 같습니다만, 이런 기능도 있다는 정도로만 알아두면 되겠습니다.)



## Axis to sample: by column
df.sample(n=2,
          random_state=1004,
          axis=1) # or equivalently, axis='column'



num_legsnum_wings
falcon22
dog40
spider80
fish00

 



axis 매개변수의 기본 설정은 대부분의 분석 요건에 해당하는 Index 기준의 무작위 표본 추출인 axis=0 (or, axis='index') 입니다.



## Axis to sample: by index
df.sample(n=2,
          random_state=1004,
          axis=0) # or equivalently, axis='index', default



num_legsnum_wingsnum_specimen_seen
falcon2210
fish008

 




  (6) DataFrame으로 부터 특정 칼럼에 대해 무작위 표본 추출한 결과를

       numpy array로 할당하기


만약 DataFrame의 여러개의 칼럼 중에서 특정 하나의 칼럼에 대해서만 무작위 표본 추출을 하고 싶다면 DataFrame['column_name'] 형식으로 먼저 Series 로 특정 칼럼의 값을 가져오고, 이에 대해서 sample() 메소드를 사용하면 됩니다.



## Sampling only for a column
df['num_legs'].sample(n=2, random_state=1004)


[Out] 
falcon 2 fish 0 Name: num_legs, dtype: int64

 



df['num_specimen_seen'].sample(n=2, random_state=1004)


[Out]
falcon 10 fish 8 Name: num_specimen_seen, dtype: int64

 



이렇게 DataFrame으로 부터 특정 하나의 칼럼 값을 Series 로 인덱싱해와서 무작위 표본 추출을 하면, 역시 그 결과 객체의 데이터 유형도 Series 입니다.



## Assigning sampling results as Series
samp_Series = df['num_legs'].sample(n=2)
type(samp_Series)


[Out] pandas.core.series.Series

 



만약, DataFrame으로 부터 특정 하나의 칼럼 값 Series 로 부터의 무작위 표본 추출 결과를 Numpy Array로 할당해서 결과를 가져오고 싶다면 numpy.array() 로 Series 를 array 로 변환해주면 됩니다.



## Assigning sampling results as numpy array
import numpy as np
samp_array = np.array(df['num_legs'].sample(n=2))
type(samp_array)

[Out] numpy.ndarray


samp_array

[Out] array([0, 2])




[ Reference ]

* pandas.DataFrame.sample: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html



이번 포스팅이 많은 도움이 되었기를 바랍니다.

행복한 데이터 과학자 되세요!  :-)




728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이번 포스팅에서는 pandas 모듈의 DataFrame.iterrows(),  DataFrame.iteritems(), DataFrame.itertuples() 의 메소드 3총사와 for loop 반복문 활용하여 pandas DataFrame 자료의 행, 열, (행, 열) 튜플에 대해서 순환 반복 (for loop iteration) 하여 자료를 반환하는 방법을 소개하겠습니다.


(1) pd.DataFrame.iterrows() : 행에 대해 순환 반복
    (Iterate over DataFrame rows as (index, Series) pairs.)

(2) pd.DataFrame.iteritems() : 열에 대해 순환 반복
    (Iterate over DataFrame (column name, Series) pairs.)

(3) pd.DataFrame.itertuples() : 이름이 있는 튜플 (인덱스, 행, 열) 에 대해 순환 반복

    (Iterate over DataFrame rows as namedtuples)



[ Pandas DataFrame의 행, 열, (행, 열) 튜플 순환 반복 ]





  (1) DataFrame.iterrows() : 행에 대해 순환 반복
      (Iterate over DataFrame rows as (index, Series) pairs.)


먼저 pandas 모듈을 importing 하고, 예제로 사용할 2개의 칼럼과 인덱스를 가진 간단한 DataFrame을 만들어보겠습니다.



import pandas as pd


df = pd.DataFrame(
    {'price': [100, 200, 300],
     'weight': [20.3, 15.1, 25.9]},
    index=['idx_a', 'idx_b', 'idx_c'])

df


priceweight
idx_a10020.3
idx_b20015.1
idx_c30025.9




이제 DataFrame.iterrows() 메소드와 for loop 반복문을 사용해서 행(row)에 대해서 순환하면서 인덱스 이름과 각 행별 칼럼별 데이터를 출력해보겠습니다.



## DataFrame.iterrows()
for idx, row in df.iterrows():
    print("** index name:", idx)
    print(row)
    print("------"*5)


[Out]
** index name: idx_a price 100.0 weight 20.3 Name: idx_a, dtype: float64 ------------------------------ ** index name: idx_b price 200.0 weight 15.1 Name: idx_b, dtype: float64 ------------------------------ ** index name: idx_c price 300.0 weight 25.9 Name: idx_c, dtype: float64 ------------------------------



DataFrame에 여러개의 칼럼이 있고, 이중에서 특정 칼럼에 대해서만 행을 순회하면서 행별 특정 칼럼의 값을 반복해서 출력하고 싶으면 row['column_name'] 또는 row[position_int] 형식으로 특정 칼럼의 이름이나 위치 정수를 넣어주면 됩니다.



## accessing to column of each rows by indexing
for idx, row in df.iterrows():
    print(idx)
    print(row['price']) # or print(row[0])
    print("-----")


[Out]
idx_a 100.0 ----- idx_b 200.0 ----- idx_c 300.0 -----



DataFrame.iterrows() 메소드는 결과물로 (index, Series) 짝(pairs)을 반환합니다. 따라서 원본 DataFrame에서의 데이터 유형일 보존하지 못하므로 행별 Series 에서는 데이터 유형이 달라질 수 있습니다.


가령, 예제의 DataFrame에서 'price' 칼럼의 데이터 유형은 '정수형(integer64)' 인데 반해, df.iterrows() 로 반환된 'row['price']'의 데이터 유형은 '부동소수형(float64)'으로 바뀌었습니다.



## DataFrame.iterrows() returns a Series for each row,
## it does not preserve dtypes across the rows.
print('Data type of df price:', df['price'].dtype) # int
print('Data type of row price:', row['price'].dtype) # float


[Out]
Data type of df price: int64 Data type of row price: float64





  (2) DataFrame.iteritems() : 열에 대해 순환 반복
      (Iterate over DataFrame (column name, Series) pairs.)


위의 (1)번이 DataFrame의 행(row)에 대해 순환 반복을 했다면, 이번에는 pandas DataFrame의 열(column)에 대해 iteritems() 메소드와 for loop 문을 사용해 순환 반복(iteration) 하면서 '칼럼 이름 (column name)' 과 '행별 값 (Series for each row)' 을 짝으로 하여 출력해 보겠습니다.



df


priceweight
idx_a10020.3
idx_b20015.1
idx_c30025.9



for col, item in df.iteritems():
    print("** column name:", col)
    print(item) # = print(item, sep='\n')
    print("-----"*5)


[Out]
** column name: price idx_a 100 idx_b 200 idx_c 300 Name: price, dtype: int64 ------------------------- ** column name: weight idx_a 20.3 idx_b 15.1 idx_c 25.9 Name: weight, dtype: float64 -------------------------




만약 DataFrame.iteritems() 와 for loop 문으로 열(column)에 대해 순환 반복하여 각 행(row)의 값을 출력하는 중에 특정 행만을 출력하고 싶으면 '행의 위치 정수(position index of row)'나 '행의 인덱스 이름 (index name of row)' 으로 item 에서 인덱싱해주면 됩니다.



for col, item in df.iteritems():
    print(col)
    print(item[0]) # = print(item['idx_a'])


[Out]
price 100 weight 20.3





  (3) DataFrame.itertuples() : 이름이 있는 튜플 (인덱스, 행, 열) 에 대해 순환 반복

    (Iterate over DataFrame rows as namedtuples)


위의 (1) 번의 DataFrame.iterrows() 에서는 DataFrame의 행(row)에 대해 순환 반복, (2) 번의 DataFrame.iteritems() 에서는 열(column, item)에 대해 순환 반복하였습니다. 반면에, 경우에 따라서는 (인덱스, 행, 열) 의 튜플 묶음 단위로 순환 반복을 하고 싶을 때 DataFrame.itertuples() 메소드를 사용할 수 있습니다.


각 행과 열에 대해서 순환 반복하면서 값을 가져오고, 이를 zip() 해서 묶어주는 번거로운 일을 DataFrame.itertuples() 메소드는 한번에 해주니 알아두면 매우 편리한 메소드입니다.


아래의 예는 DataFrame.itertuples() 메소드와 for loop 문을 사용해서 'df' DataFrame의 이름있는 튜플인 namedtuple (Index, row, column) 에 대해서 순환 반복하면서 출력을 해보겠습니다.



df


priceweight
idx_a10020.3
idx_b20015.1
idx_c30025.9



for row in df.itertuples():
    print(row)


[Out] 
Pandas(Index='idx_a', price=100, weight=20.3) Pandas(Index='idx_b', price=200, weight=15.1) Pandas(Index='idx_c', price=300, weight=25.9)



만약 인덱스를 포함하고 싶지 않다면 index=False 로 매개변수를 설정해주면 됩니다.



## By setting the indx=False, we can remove the index as the first element of the tuple.
for row in df.itertuples(index=False):
    print(row)


[Out] 
Pandas(price=100, weight=20.3) Pandas(price=200, weight=15.1) Pandas(price=300, weight=25.9)



DataFrame.itertuples() 메소드가 이름있는 튜플(namedtuples)을 반환한다고 했는데요, name 매개변수로 튜플의 이름을 부여할 수도 있습니다. 아래 예에서는 name='Product' 로 해서 튜플에 'Product'라는 이름을 부여해보았습니다.



## Setting a custom name for the yielded namedtuples.
for row in df.itertuples(name='Product'):
    print(row)


[Out]
Product(Index='idx_a', price=100, weight=20.3) Product(Index='idx_b', price=200, weight=15.1) Product(Index='idx_c', price=300, weight=25.9)



DataFrame.iterrows() 는 (index, Series) 짝을 반환하다보니 원본 DataFrame의 데이터 유형을 보존하지 못한다고 했는데요, DataFrame.itertuples() 는 원본 DataFrame의 데이터 유형을 그대로 보존합니다.


아래 예에서 볼 수 있듯이 df['price']의 데이터 유형과 df.itertuples()의 결과의 row.price 의 데이터 유형이 둘 다 '정수(int64)'로 동일합니다.



## DataFrame.itertuples() preserves dtypes, returning namedtuples of the values.
print('Data type of df price:', df['price'].dtype) # int
print('Data type of row price:', type(row.price)) # int


[Out] 
Data type of df price: int64 Data type of row price: <class 'int'>



[Reference]

* DataFrame.iterrows(): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iterrows.html#pandas.DataFrame.iterrows

* DataFrame.iteritems(): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iteritems.html

* DataFrame.itertuples(): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.itertuples.html#pandas.DataFrame.itertuples


이번 포스팅이 많은 도움이 되었기를 바랍니다.

행복한 데이터 과학자 되세요! :-)




728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

pandas의 Series나 DataFrame 자료구조로 저장된 시계열 데이터에 대해서 이전 값 대비 현재 값의 변동율(change percentage)을 구하고 싶을 때 pandas 의 pct_change() 메소드를 사용하면 매우 편리하게 계산할 수 있습니다. 


이번 포스팅에서는 Python pandas 패키지의 pct_change() 메소드를 사용하여 


pandas Series에서

- (1) 이전 원소 대비 변동률 

       (Percentage change between the current and a prior element)

- (2) 이전 2개 원소 대비 변동률 

       (Percentage change between the current and 2 periods prior element)

- (3) 결측값을 이전 원소 값으로 대체 후 이전 원소 대비 변동률 

       (Percentage change between the current and a prior element after filling the missing values using the 'forward fill' method)


pandas DataFrame에서

- (4) 그룹별 이전 분기 대비 변동률 

      (Percentage change between the current and a prior quarter by Group)

- (5) 그룹별 전년 동분기 대비 변동률  

       (Percentage change between the current and a year before by Group)




* pandas의 pct_change() 메소드는 Series와 DataFrame 자료구조 모두에서 동일하게 사용 가능합니다. 



-- pandas Series 에서


  (1) 이전 원소 대비 변동률 

       (Percentage change between the current and a prior element)


pandas의 pct_change() 메소드는 기본 설정이 이전 원소 대비 현재 원소의 변동 비율(percentage change)을 계산해줍니다. 아래 pandas Series의 경우, 


첫번째 값은 이전 값이 없으므로 NaN

두번째 값의 첫번째 값 대비 변동률 = (20-10)/10 = 1.0

세번째 값의 두번째 값 대비 변동률 = (50-20)/20 = 1.5

네번째 값의 세번째 값 대비 변동률 = (55-50)/50 = 0.1

다섯번째 값의 네번째 값 대비 변동률 = (70-55)/55 = 0.27



In [1]: import pandas as pd


In [2]:

s = pd.Series([10, 20, 50, 55, 70])

s.pct_change()


Out[2]:

0 NaN

1 1.000000

2 1.500000

3 0.100000

4 0.272727

dtype: float64





  (2) 이전 2개 원소 대비 변동률 

       (Percentage change between the current and 2 periods prior element)


변동률을 구할 때 이전 값의 이동 기간을 periods 매개변수를 사용하면 자유롭게 설정해줄 수 있습니다. 가령, 위의 s Series 예에서 이전 2개 원소 대비 변동률은 s.pct_change(periods=2) 로 해주면 됩니다. 


첫번째와 두번째 값은 이전 2개 원소 값이 없으므로 NaN

세번째값의 이전 2개 원소 값 대비 변동률 = (50-10)/10 = 4.0

네번째값의 이전 2개 원소 값 대비 변동률 = (55-20)/20 = 1.75

다섯번째값의 이전 2개 원소 값 대비 변동률 = (70-50)/50 = 0.4



In [3]:

s = pd.Series([10, 20, 50, 55, 70])

s.pct_change(periods=2)


Out[3]:

0 NaN

1 NaN

2 4.00

3 1.75

4 0.40

dtype: float64





  (3) 결측값을 이전 원소 값으로 대체 후 이전 원소 대비 변동률 

       (Percentage change between the current and a prior element
        after filling the missing values using the 'forward fill' method
)


만약 데이터셋 안에 결측값(missing value)가 있다면 pct_change() 메소드에 pandas의 결측값 처리 매개변수를 그대로 차용하여 결측값을 처리한 후에 이전 원소 대비 변동률을 구할 수 있습니다. 


결측값을 처리하는 방법으로는, 

fill_method='ffill' or 'pad'       : 이전 값으로 결측값을 대체하여 채우기 (앞방향으로 채워나가기)

fill_method='bfill' or 'backfill'  : 이후 값으로 결측값을 대체하여 채우기 (뒤방향에서 채워나가기)



In [4]:

s2 = pd.Series([10, 20, 50, None, 70])

s2.pct_change(fill_method='ffill')


Out[4]:

0 NaN

1 1.0

2 1.5

3 0.0

4 0.4

dtype: float64

 




-- pandas DataFrame 에서


  (4) 그룹별 이전 분기 대비 변동률 

      (Percentage change between the current and a prior quarter by Group)


예제로 사용할 '제품(product)' 그룹을 가진 연도(year)/ 분기(quarter)  기간 별 판매량(sales) 칼럼으로 구성된 DataFrame을 만들어보겠습니다. 



In [5]:

# input data sale = pd.DataFrame( {'product': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b'], 'year': [2018, 2018, 2018, 2018, 2019, 2019, 2019, 2019, 2020, 2020, 2020, 2020, 2018, 2018, 2018, 2018, 2019, 2019, 2019, 2019, 2020, 2020, 2020, 2020], 'quarter': [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], 'sales': [5, 6, 6, 8, 10, 20, 30, 40, 12, 25, 38, 50, 60, 65, 80, 95, 100, 125, 130, 140, 110, 130, 132, 144]})


sale

Out[5]:

product year quarter sales

0 a 2018 1 5

1 a 2018 2 6

2 a 2018 3 6

3 a 2018 4 8

4 a 2019 1 10

5 a 2019 2 20

6 a 2019 3 30

7 a 2019 4 40

8 a 2020 1 12

9 a 2020 2 25

10 a 2020 3 38

11 a 2020 4 50

12 b 2018 1 60

13 b 2018 2 65

14 b 2018 3 80

15 b 2018 4 95

16 b 2019 1 100

17 b 2019 2 125

18 b 2019 3 130

19 b 2019 4 140

20 b 2020 1 110

21 b 2020 2 130

22 b 2020 3 132

23 b 2020 4 144

 



이제 '제품(product)' 그룹별로 '이전 분기 대비 현재 분기의 변동율(change percentage between the current and the prior quarter)' 을 구해보겠습니다. 


물론 이번 예제 데이터는 년(year)/ 분기(quarter) 를 기준으로 이미 정렬이 되어 있기는 합니다만, 정렬이 안되어 있는 경우도 있을 수 있으므로 명확하게 시간 기준으로 정렬될 수 있도록 sort_values(by=['year', 'quarter'] 로 명시적으로 먼저 정렬을 해주었습니다.  다음으로 groupby(['product']) 메소드로 '제품(product)' 별로 그룹을 분할(split) 하여 그룹별로 이후 연산이 이루어지도록 하였습니다. 마지막으로 sales.pct_change() 메소드로 '판매량(sales)' 칼럼에 대해 '이전대비 변동률(pct_change)'을 '제품' 그룹별로 구해주었습니다. 



In [6]:

sale['sales_pct_change_by_1q'] = sale.\ sort_values(['year', 'quarter']).\ groupby(['product']).\ sales.pct_change()


sale

Out[6]:

product year quarter sales pct_change_by_1q

0 a 2018 1 NaN

1 a 2018 2 6 0.200000

2 a 2018 3 6 0.000000

3 a 2018 4 8 0.333333

4 a 2019 1 10 0.250000

5 a 2019 2 20 1.000000

6 a 2019 3 30 0.500000

7 a 2019 4 40 0.333333

8 a 2020 1 12 -0.700000

9 a 2020 2 25 1.083333

10 a 2020 3 38 0.520000

11 a 2020 4 50 0.315789

12 b 2018 1 60 NaN

13 b 2018 2 65 0.083333

14 b 2018 3 80 0.230769

15 b 2018 4 95 0.187500

16 b 2019 1 100 0.052632

17 b 2019 2 125 0.250000

18 b 2019 3 130 0.040000

19 b 2019 4 140 0.076923

20 b 2020 1 110 -0.214286

21 b 2020 2 130 0.181818

22 b 2020 3 132 0.015385

23 b 2020 4 144 0.090909

 




  (5) 그룹별 전년 동분기 대비 변동률  

       (Percentage change between the current and a year before by Group)


만약 이전 분기가 아니라 '전년 동일 분기' 대비 변동률을 구하고 싶다면 pct_change(periods=4) 처럼 periods=4 매개변수를 설정해주어서 4분기 이전 (즉, 전년 동일 분기)의 값 대비 변동률을 구해주면 됩니다. (만약 월 단위로 데이터가 집계되어 있다면 pct_change(periods=12) 로 해주면 됩니다.)



In [7]:

 sale['pct_change_by_1y'] = sale.sort_values(['year', 'quarter']).\

  groupby(['product']).\

  sales.pct_change(periods=4)


In [8]: sale.sort_values(by=['product', 'quarter', 'year'])

Out[8]:

product year quarter sales pct_change_by_1q pct_change_by_1y

0 a 2018 1 5 NaN NaN

4 a 2019 1 10 0.250000 1.000000

8 a 2020 1 12 -0.700000 0.200000

1 a 2018 2 6 0.200000 NaN

5 a 2019 2 20 1.000000 2.333333

9 a 2020 2 25 1.083333 0.250000

2 a 2018 3 6 0.000000 NaN

6 a 2019 3 30 0.500000 4.000000

10 a 2020 3 38 0.520000 0.266667

3 a 2018 4 8 0.333333 NaN

7 a 2019 4 40 0.333333 4.000000

11 a 2020 4 50 0.315789 0.250000

12 b 2018 1 60 NaN NaN

16 b 2019 1 100 0.052632 0.666667

20 b 2020 1 110 -0.214286 0.100000

13 b 2018 2 65 0.083333 NaN

17 b 2019 2 125 0.250000 0.923077

21 b 2020 2 130 0.181818 0.040000

14 b 2018 3 80 0.230769 NaN

18 b 2019 3 130 0.040000 0.625000

22 b 2020 3 132 0.015385 0.015385

15 b 2018 4 95 0.187500 NaN

19 b 2019 4 140 0.076923 0.473684

23 b 2020 4 144 0.090909 0.028571

 



또는 아래 방법처럼 분기(quarter)/ 년(year) 를 기준으로 먼저 정렬을 해놓고, 그 다음에 제품/분기 그룹(groupby(['product', 'quarter']) 별로 판매량의 변동률(sales.pct_change())를 구해도 결과는 같습니다. 



# or equvalently

sale['pct_change_by_1y'] = sale.sort_values(by=['quarter', 'year']).\

    groupby(['product', 'quarter']).\

        sales.pct_change()


sale.sort_values(by=['product', 'quarter', 'year'])

 



이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!  :-)



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

  1. chapchu@gmail.com 2020.12.29 08:43  댓글주소  수정/삭제  댓글쓰기

    얼마전 이와비슷한 내용으로 골머리를 앓던중 댓글에 문의를 남겼는데 아무래도 이를 해결하기위한 게시글 같습니다. 너무 감사드립니다. 앞으로도 자주 방문하여 지식쌓겠습니다 다시한번 감사드립니다^^

이번 포스팅에서는 Python pandas 데이터프레임 안에 여러개의 칼럼 별로 결측값을 대체하는 방법(how to fill missing values per each columns)을 다르게 하는 방법을 소개하겠습니다. 




먼저 예제로 사용할 간단할, 각 칼럼별로 결측값을 포함하고 있는 pandas DataFrame을 만들어보겠습니다. 



import numpy as np

import pandas as pd


# Make a DataFrame with missing values

df = pd.DataFrame({'a': [1, 2, 3, np.nan, 5], 

                   'b': [30, 20, np.nan, 35, 32], 

                   'c': [0.2, np.nan, 0.5, 0.3, 0.4], 

                   'd': ['c1', np.nan, 'c3', 'c4', 'c5'], 

                   'e': [10, 11, np.nan, 13, 15]})

 

df

abcde
01.030.00.2c110.0
12.020.0NaNNaN11.0
23.0NaN0.5c3NaN
3NaN35.00.3c413.0
45.032.00.4c515.0




다음으로, 각 칼럼별로 결측값을 대체하는 방법을 Dictionary에 Key (칼럼 이름): Value (결측값 대체 방법/값) 로 정리해보겠습니다. 


[ 칼럼별 결측값 대체 방법(전략) ]

  • 칼럼 'a': 0 으로 결측값 대체
  • 칼럼 'b': 평균(mean)으로 결측값 대체
  • 칼럼 'c': 중앙값(median)으로 결측값 대체
  • 칼럼 'd': 'Unknown'으로 결측값 대체
  • 칼럼 'e': 결측값 보간 (interpolation)



missing_fill_val = {'a': 0, 

                    'b': df.b.mean(), 

                    'c': df.c.median(), 

                    'd': 'Unknown', 

                    'e': df.e.interpolate()}


print(missing_fill_val)

{'a': 0, 'c': 0.35, 'b': 29.25, 'e': 0    10.0
1    11.0
2    12.0
3    13.0
4    15.0
Name: e, dtype: float64, 'd': 'Unknown'}

 



이제 준비가 다 되었으니 df DataFrame의 각 칼럼별로 서로 다른 결측값 대체 전략을 사용하여 결측값을 채워보겠습니다.  fillna() 함수의 괄호 안에 위에서 정의한 Dictionary 를 넣어주면 끝입니다. 간단하지요? ^^



df2 = df.fillna(missing_fill_val)


df2


a
bcde
01.030.000.20c110.0
12.020.000.35Unknown11.0
23.029.250.50c312.0
30.035.000.30c413.0
45.032.000.40c515.0

 



만약 원본 df DataFrame 을 보존할 필요가 없이 바로 결측값을 채워넣기 해서 수정하고 싶으면 inplace=True 옵션을 설정해주면 됩니다. 



df.fillna(missing_fill_val, inplace=True)

abcde
01.030.000.20c110.0
12.020.000.35Unknown11.0
23.029.250.50c312.0
30.035.000.30c413.0
45.032.000.40c515.0

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요.



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

이번 포스팅에서는 (1) 날짜 TimeStamp (m개) 와 (2) 고객 ID (n개) 의 두 개 칼럼을 가진 DataFrame에서 고객ID 별로 중간 중간 날짜 TimeStamp 가 비어있는 경우 모두 '0'으로 채워서 모든 조합 (m * n 개) 을 MultiIndex로 가진 시계열 데이터 형태의 DataFrame을 만들어보겠습니다. 


이번 포스팅에서는 pandas DataFrame에서 index 설정 관련해서 MultiIndex(), set_index(), reindex(), reset_index() 등 index 설정과 재설정 관련된 여러가지 메소드가 나옵니다. 


말로만 설명을 들으면 좀 어려운데요, 아래의 전(Before) --> 후(After) DataFrame의 전처리 Output Image를 보면 이해하기가 쉽겠네요. (시계열 데이터 분석을 할 때 아래의 우측에 있는 것처럼 데이터 전처리를 미리 해놓아야 합니다.) 




먼저, 년-월-일 TimeStamp (ts), 고객 ID (id), 구매 금액 (amt)의 세개 칼럼으로 구성된 거래 데이터(tr)인, 예제로 사용할 간단한 pandas DataFrame을 만들어보겠습니다. 



import pandas as pd


tr = pd.DataFrame({

    'ts': ['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-01', '2020-06-03'], 

    'id': [1, 1, 1, 2, 3], 

    'amt': [100, 300, 50, 200, 150]})


tr

tsidamt
02020-06-011100
12020-06-021300
22020-06-03150
32020-06-012200
42020-06-033150

 



다음으로, 거래 데이터(tr) DataFrame의 날짜(ts)와 고객ID(id)의 모든 조합(all combination)으로 구성된  Multi-Index 를 만들어보겠습니다. pd.MultiIndex.from_product((A, B)) 메소드를 사용하면 Cartesian Product 을 수행하여, 총 A의 구성원소 개수 * B의 구성원소 개수 종류 만큼의 MultiIndex 를 생성해줍니다. 위 예제의 경우 날짜(ts)에 '2020-06-01', '2020-06-02', '2020-06-03'의 3개 날짜가 있고, 고객ID(id) 에는 1, 2, 3 의 3개가 있으므로 Cartesian Product 을 하면 아래의 결과처럼 3 * 3 = 9 의 조합이 생성이 됩니다. 



date_id_idx = pd.MultiIndex.from_product((set(tr.ts), set(tr.id)))

date_id_idx

MultiIndex([('2020-06-01', 1),
            ('2020-06-01', 2),
            ('2020-06-01', 3),
            ('2020-06-02', 1),
            ('2020-06-02', 2),
            ('2020-06-02', 3),
            ('2020-06-03', 1),
            ('2020-06-03', 2),
            ('2020-06-03', 3)],
           )



이제 위에서 Cartesian Product으로 만든 TimeStamp(ts)와 고객ID(id)의 모든 조합으로 구성된 MultiIndex인 date_id_idx 를 사용하여 index를 재설정(reindex) 해보겠습니다. 이때 원래(Before)의 DataFrame에는 없었다가 date_id_idx 로 index를 재설정(reindex) 하면서 새로 생긴 행에 구매금액(amt) 칼럼에는 'NaN' 의 결측값이 들어가게 됩니다. 이로서 처음에 5개 행이었던 것이 이제 9개(3*3=9) 행으로 늘어났습니다. 



tr_tsformat = tr.set_index(['ts', 'id']).reindex(date_id_idx)

tr_tsformat

amt
2020-06-011100.0
2200.0
3NaN
2020-06-021300.0
2NaN
3NaN
2020-06-03150.0
2NaN
3150.0

 



날짜(ts)와 고객ID(id)의 MultiIndex로 reindex() 하면서 생긴 NaN 값을 '0'으로 채워넣기(fill_value=0)해서 새로 DataFrame을 만들어보겠습니다. 



tr_tsformat = tr.set_index(['ts', 'id']).reindex(date_id_idx, fill_value=0)

tr_tsformat

amt
2020-06-011100
2200
30
2020-06-021300
20
30
2020-06-03150
20
3150

 



만약 날짜(ts)와 고객ID(id)의 MultiIndex로 이루어진 위의 DataFrame에서 MultiIndex를 칼럼으로 변경하고 싶다면 reset_index() 함수를 사용하면 됩니다. 칼럼 이름은 애초의 DataFrame과 동일하게 ['ts', 'id', 'amt'] 로 다시 부여해주었습니다. 



tr_tsformat.reset_index(inplace=True)

tr_tsformat

level_0level_1amt
02020-06-011100
12020-06-012200
22020-06-0130
32020-06-021300
42020-06-0220
52020-06-0230
62020-06-03150
72020-06-0320
82020-06-033

150

 


tr_tsformat.columns = ['ts', 'id', 'amt']

tr_tsformat

tsidamt
02020-06-011100
12020-06-012200
22020-06-0130
32020-06-021300
42020-06-0220
52020-06-0230
62020-06-03150
72020-06-0320
82020-06-033150




참고로, pandas에서 ID는 없이 TimeStamp만 있는 일정한 주기의 시계열 데이터 Series, DataFrame 만들기는 https://rfriend.tistory.com/501 를 참고하세요. 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

지난번 포스팅에서는 Python pandas에서 resampling 중 Downsampling 으로 집계할 때에 왼쪽과 오른쪽 중에서 어느쪽을 포함(inclusive, closed)할 지와 어느쪽으로 라벨 이름(label)을 쓸지(https://rfriend.tistory.com/507)에 대해서 알아보았습니다. 


이번 포스팅에서는 pandas의 resampling 중 Upsampling으로 시계열 데이터 주기(frequency)를 변환(conversion) 할 때 생기는 결측값을 처리하는 두 가지 방법을 소개하겠습니다. 


(1) Upsampling 으로 주기 변환 시 생기는 결측값을 채우는 방법 (filling forward/backward)

(2) Upsampling 으로 주기 변환 시 생기는 결측값을 선형 보간하는 방법 (linear interpolation)






예제로 사용할 간단할 2개의 칼럼을 가지고 주기(frequency)가 5초(5 seconds)인 시계열 데이터 DataFrame을 만들어보겠습니다. 



import pandas as pd

import numpy as np


rng = pd.date_range('2019-12-31', periods=3, freq='5S')

rng

[Out]:

DatetimeIndex(['2019-12-31 00:00:00', '2019-12-31 00:00:05', '2019-12-31 00:00:10'], dtype='datetime64[ns]', freq='5S')


ts = pd.DataFrame(np.array([0, 1, 3, 2, 10, 3]).reshape(3, 2), 

                  index=rng

                  columns=['col_1', 'col_2'])

ts

[Out]:

col_1col_2
2019-12-31 00:00:0001
2019-12-31 00:00:0532
2019-12-31 00:00:10103




이제 pandas resample() 메소드를 사용해서 주기가 5초(freq='5S')인 원래 데이터를 주기가 1초(freq='1S')인 데이터로 Upsampling 변환을 해보겠습니다. 그러면 아래처럼 새로 생긴 날짜-시간 행에 결측값(missing value)이 생깁니다ㅣ  



ts_upsample = ts.resample('S').mean()

ts_upsample

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:01NaNNaN
2019-12-31 00:00:02NaNNaN
2019-12-31 00:00:03NaNNaN
2019-12-31 00:00:04NaNNaN
2019-12-31 00:00:053.02.0
2019-12-31 00:00:06NaNNaN
2019-12-31 00:00:07NaNNaN
2019-12-31 00:00:08NaNNaN
2019-12-31 00:00:09NaNNaN
2019-12-31 00:00:1010.03.0

 



위에 Upsampling을 해서 생긴 결측값들을 (1) 채우기(filling), (2) 선형 보간(linear interpolation) 해보겠습니다. 



  (1) Upsampling 으로 주기 변환 시 생기는 결측값을 채우기 (filling missing values)


(1-1) 앞의 값으로 뒤의 결측값 채우기 (Filling forward)



# (1) filling forward

ts_upsample.ffill()

ts_upsample.fillna(method='ffill')

ts_upsample.fillna(method='pad')

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:010.01.0
2019-12-31 00:00:020.01.0
2019-12-31 00:00:030.01.0
2019-12-31 00:00:040.01.0
2019-12-31 00:00:053.02.0
2019-12-31 00:00:063.02.0
2019-12-31 00:00:073.02.0
2019-12-31 00:00:083.02.0
2019-12-31 00:00:093.02.0
2019-12-31 00:00:1010.03.0





(1-2) 뒤의 값으로 앞의 결측값 채우기 (Filling backward)



# (2)filling backward

ts_upsample.bfill()

ts_upsample.fillna(method='bfill')

ts_upsample.fillna(method='backfill')

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:013.02.0
2019-12-31 00:00:023.02.0
2019-12-31 00:00:033.02.0
2019-12-31 00:00:043.02.0
2019-12-31 00:00:053.02.0
2019-12-31 00:00:0610.03.0
2019-12-31 00:00:0710.03.0
2019-12-31 00:00:0810.03.0
2019-12-31 00:00:0910.03.0
2019-12-31 00:00:1010.03.0





(1-3) 특정 값으로 결측값 채우기



# (3)fill Missing value with '0'

ts_upsample.fillna(0)

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:010.00.0
2019-12-31 00:00:020.00.0
2019-12-31 00:00:030.00.0
2019-12-31 00:00:040.00.0
2019-12-31 00:00:053.02.0
2019-12-31 00:00:060.00.0
2019-12-31 00:00:070.00.0
2019-12-31 00:00:080.00.0
2019-12-31 00:00:090.00.0
2019-12-31 00:00:1010.03.0

 




(1-4) 평균 값으로 결측값 채우기



# (4) filling with mean value

# mean per column

ts_upsample.mean()

[Out]:
col_1    4.333333
col_2    2.000000
dtype: float64


ts_upsample.fillna(ts_upsample.mean())

[Out]:

col_1col_2
2019-12-31 00:00:000.0000001.0
2019-12-31 00:00:014.3333332.0
2019-12-31 00:00:024.3333332.0
2019-12-31 00:00:034.3333332.0
2019-12-31 00:00:044.3333332.0
2019-12-31 00:00:053.0000002.0
2019-12-31 00:00:064.3333332.0
2019-12-31 00:00:074.3333332.0
2019-12-31 00:00:084.3333332.0
2019-12-31 00:00:094.3333332.0
2019-12-31 00:00:1010.0000003.0

 




(1-5) 결측값 채우는 행의 개수 제한하기



# (5) limit the number of filling observation

ts_upsample.ffill(limit=1)

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:010.01.0
2019-12-31 00:00:02NaNNaN
2019-12-31 00:00:03NaNNaN
2019-12-31 00:00:04NaNNaN
2019-12-31 00:00:053.02.0
2019-12-31 00:00:063.02.0
2019-12-31 00:00:07NaNNaN
2019-12-31 00:00:08NaNNaN
2019-12-31 00:00:09NaNNaN
2019-12-31 00:00:1010.03.0
 




  (2) Upsampling 으로 주기 변환 시 생기는 결측값을 선형 보간하기 (linear interpolation)



# (6) Linear interpolation by values

ts_upsample.interpolate(method='values') # by default

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:010.61.2
2019-12-31 00:00:021.21.4
2019-12-31 00:00:031.81.6
2019-12-31 00:00:042.41.8
2019-12-31 00:00:053.02.0
2019-12-31 00:00:064.42.2
2019-12-31 00:00:075.82.4
2019-12-31 00:00:087.22.6
2019-12-31 00:00:098.62.8
2019-12-31 00:00:1010.03.0



ts_upsample.interpolate(method='values').plot()





# (7) Linear interpolation by time

ts_upsample.interpolate(method='time')

[Out]:

col_1col_2
2019-12-31 00:00:000.01.0
2019-12-31 00:00:010.61.2
2019-12-31 00:00:021.21.4
2019-12-31 00:00:031.81.6
2019-12-31 00:00:042.41.8
2019-12-31 00:00:053.02.0
2019-12-31 00:00:064.42.2
2019-12-31 00:00:075.82.4
2019-12-31 00:00:087.22.6
2019-12-31 00:00:098.62.8
2019-12-31 00:00:1010.03.0

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

지난번 포스팅에서는 분기 단위의 기간 날짜 범위 만들기, 그리고 period와 timestamp 간 변환하기 (https://rfriend.tistory.com/506)에 대해서 소개하였습니다. 


Python pandas의 resample() 메소드를 사용하면 


(a) 더 세부적인 주기(higher frequency)의 시계열 데이터를 더 낮은 주기로 집계/요약을 하는 Downsampling (예: 초(seconds) --> 10초(10 seconds), 일(day) --> 주(week), 일(day) --> 월(month) 등)과, 


(b) 더 낮은 주기의 시계열 데이터를 더 세부적인 주기의 데이터로 변환하는 Upsampling (예: 10초 --> 1초, 주 --> 일, 월 --> 주, 년 --> 일 등)을 할 수 있습니다.  



이번 포스팅에서는 pandas의 resample() 메소드로 Downsampling 을 할 때 (예: 1초 단위 주기 --> 10초 단위/ 1분 단위/ 1시간 단위 주기로 resampling)


(1) 왼쪽과 오른쪽 중에서 포함 위치 설정 (closed)

(2) 왼쪽과 오른쪽 중에서 라벨 이름 위치 설정 (label)


하는 방법을 소개하겠습니다. 


포함 위치와 라벨 이름 설정 시 왼쪽과 오른쪽 중에서 어디를 사용하느냐에 대한 규칙은 없구요, (a) 명확하게 인지하고 있고 (특히, 여러 사람이 동시에 협업하여 작업할 경우), (b) product의 코드 전반에 걸쳐서 일관되게(consistant) 사용하는 것이 필요합니다.  (SQL로 DB에서 두 그룹으로 나누어서 시계열 데이터 전처리 작업을 하다가 나중에서야 포함 여부와 라벨 규칙이 서로 다르다는 것을 확인하고, 이를 동일 규칙으로 수정하느라 시간을 소비했던 경험이 있습니다. -_-;;;)







예제로 사용하기 위해 1분 단위 주기의 6개 데이터 포인트를 가지는 간단한 시계열 데이터 pandas Series 를 만들어보겠습니다. 



import pandas as pd


# generate dates range

dates = pd.date_range('2020-12-31', periods=6, freq='min') # or freq='T'

dates

[Out]:

DatetimeIndex(['2020-12-31 00:00:00', '2020-12-31 00:01:00', '2020-12-31 00:02:00', '2020-12-31 00:03:00', '2020-12-31 00:04:00', '2020-12-31 00:05:00'], dtype='datetime64[ns]', freq='T')

# create Series

ts_series = pd.Series(range(len(dates)), index=dates)

ts_series

[Out]:
2020-12-31 00:00:00    0
2020-12-31 00:01:00    1
2020-12-31 00:02:00    2
2020-12-31 00:03:00    3
2020-12-31 00:04:00    4
2020-12-31 00:05:00    5
Freq: T, dtype: int64



이제 '1 분 단위 주기'(freq='min')인 시계열 데이터를 '2초 단위 주기'(freq='2min' or freq='2T')로 resample() 메소드를 이용해서 Downsampling을 해보도록 하겠습니다. 


이때 포함 위치 (a) closed='left' (by default) 또는 (b) closed='right' 과 라벨 이름 위치 (c) label='left' (by default) 또는 label='right' 의 총 4개 조합별로 나누어서 Downsampling 결과를 비교해보겠습니다. 집계 함수는 sum()을 공통으로 사용하겠습니다. 



  (1) By default: Downsampling 시 closed='left', label='left'


Downsampling 할 때 왼쪽과 오른쪽 중에서 한쪽은 포함(inclusive, default: 'left')되고 나머지 한쪽은 포함되지 않습니다. 그리고 Downsampling으로 resampling 된 후의 라벨 이름의 경우 default는 가장 왼쪽(label='left')의 라벨을 사용합니다. 



ts_series = pd.Series(range(len(dates)), index=dates)

ts_series

[Out]:
2020-12-31 00:00:00    0
2020-12-31 00:01:00    1
2020-12-31 00:02:00    2
2020-12-31 00:03:00    3
2020-12-31 00:04:00    4
2020-12-31 00:05:00    5
Freq: T, dtype: int64


# by default, left side of bin interval is closed

# by default, left side of bin inverval is labeled

ts_series.resample('2min').sum()

[Out]:

2020-12-31 00:00:00 1 2020-12-31 00:02:00 5 2020-12-31 00:04:00 9 Freq: 2T, dtype: int64


# same result with above

ts_series.resample('2min', closed='left', label='left').sum()

[Out]:
2020-12-31 00:00:00    1
2020-12-31 00:02:00    5
2020-12-31 00:04:00    9
Freq: 2T, dtype: int64





  (2) Downsampling 시 closed='right', label='left'



ts_series = pd.Series(range(len(dates)), index=dates)

ts_series

[Out]:
2020-12-31 00:00:00    0
2020-12-31 00:01:00    1
2020-12-31 00:02:00    2
2020-12-31 00:03:00    3
2020-12-31 00:04:00    4
2020-12-31 00:05:00    5
Freq: T, dtype: int64


# right side of bin interval is closed using closed='right'

ts_series.resample('2min', closed='right', label='left').sum()

[Out]:

2020-12-30 23:58:00 0 2020-12-31 00:00:00 3 2020-12-31 00:02:00 7 2020-12-31 00:04:00 5 Freq: 2T, dtype: int64

 




  (3) Downsampling 시 closed='left', label='right'



ts_series = pd.Series(range(len(dates)), index=dates)

ts_series

[Out]:
2020-12-31 00:00:00    0
2020-12-31 00:01:00    1
2020-12-31 00:02:00    2
2020-12-31 00:03:00    3
2020-12-31 00:04:00    4
2020-12-31 00:05:00    5
Freq: T, dtype: int64


# right side of bin inverval is labeled using label='right'

ts_series.resample('2min', closed='left', label='right').sum()

[Out]:
2020-12-31 00:02:00    1
2020-12-31 00:04:00    5
2020-12-31 00:06:00    9
Freq: 2T, dtype: int64





  (4) Downsampling 시 closed='right', label='right'


아래의 예는 디폴트와 정반대로 시계열 구간의 오른쪽을 포함시키고(closed='right') 라벨 이름도 오른쪽 구간 값(label='right')을 가져다가 Downsampling 한 경우입니다. 



ts_series = 
pd.Series(range(len(dates)), index=dates)

ts_series

[Out]:
2020-12-31 00:00:00    0
2020-12-31 00:01:00    1
2020-12-31 00:02:00    2
2020-12-31 00:03:00    3
2020-12-31 00:04:00    4
2020-12-31 00:05:00    5
Freq: T, dtype: int64


# right side of bin interval is closed using closed='right'

# right side of bin inverval is labeled using label='right'

ts_series.resample('2min', closed='right', label='right').sum()

2020-12-31 00:00:00    0
2020-12-31 00:02:00    3
2020-12-31 00:04:00    7
2020-12-31 00:06:00    5 

Freq: 2T, dtype: int64






  (5) 시계열 pandas DataFrame에 대해 Downsaumpling 시 포함(closed), 라벨(label) 위치 설정하기



지금까지 위의 (1), (2), (3), (4)는 pandas Series를 대상으로 한 예제였습니다. DatatimeIndex를 index로 가지는 시계열 데이터 pandas DataFrame 도 Series와 동일한 방법으로 Downsampling 하면서 포함, 라벨 위치를 설정합니다. 



import pandas as pd


# generate dates range

dates = pd.date_range('2020-12-31', periods=6, freq='min')

dates

[Out]:
DatetimeIndex(['2020-12-31 00:00:00', '2020-12-31 00:01:00',
               '2020-12-31 00:02:00', '2020-12-31 00:03:00',
               '2020-12-31 00:04:00', '2020-12-31 00:05:00'],
              dtype='datetime64[ns]', freq='T')

# create timeseries DataFrame

ts_df = pd.DataFrame({'val': range(len(dates))}, index=dates)

ts_df

[Out]:
val
2020-12-31 00:00:000
2020-12-31 00:01:001
2020-12-31 00:02:002
2020-12-31 00:03:003
2020-12-31 00:04:004
2020-12-31 00:05:005



# (a) Downsampling using default setting

ts_df.resample('2min').sum()

[Out]:

val
2020-12-31 00:00:001
2020-12-31 00:02:005
2020-12-31 00:04:009


# (b) Downsampling using closed='right'

ts_df.resample('2min', closed='right').sum()

[Out]:

val
2020-12-30 23:58:000
2020-12-31 00:00:003
2020-12-31 00:02:007
2020-12-31 00:04:005


# (c) Downsampling using label='right'

ts_df.resample('2min', label='right').sum()

[Out]:

val
2020-12-31 00:02:001
2020-12-31 00:04:005
2020-12-31 00:06:009


# (d) Downsampling using closed='right', label='right'

ts_df.resample('2min', closed='right', label='right').sum()

[Out]:

val
2020-12-31 00:00:000
2020-12-31 00:02:003
2020-12-31 00:04:007
2020-12-31 00:06:005




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요.



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요

지난번 포스팅에서는 Python pandas에서 시간대를 확인, 설정, 변경하는 방법(https://rfriend.tistory.com/505)을 소개하였습니다. 


이번 포스팅에서는 Python pandas에서 


(1) 분기 단위의 기간 주기 만들기 (quarterly period frequencies)

(2) 분기 단위의 기간 날짜-범위 만들기 (quarterly period date-range)

(3) 분기 단위의 기간과 timestamp 간 변환하기 (conversion between quarterly period and timestamp)

(4) 분기 단위 기간으로 집계하기 (quarterly period group by aggregation)


에 대해서 소개하겠습니다. 


이번 포스팅은 특히, 금융, 회계 분야에서 분기 단위(fiscal year quarters) 실적 집계, 분석할 때 pandas로 하기에 유용한 기능들입니다. 


[ 그림1. pandas 분기 단위의 기간 범위 만들기 (Quarterly Period Range) ]




  (1) 분기 단위의 기간 주기 만들기 (quarterly period frequencies)


pandas Period() 함수를 사용해서 the Fiscal Year 2020 4 Quarter 를 만들어보겠습니다. 회기년도 '2020-Q4'는 위의 [그림 1] 에서 보는 바와 같이, 2019.3월~5월(2020- Q1), 2019.6월~8월(2020-Q2), 2019.9월~11월(2020-Q3), 2019.12월~2020.2월(2020-Q4) 의 기간으로 구성되어 있습니다. (회계년도 2020 에 2019년의 3월~12월이 포함되어서 좀 이상하게 보일 수도 있는데요, 그냥 이렇습니다. ^^') 



import pandas as pd

import numpy as np


p = pd.Period('2020Q4', freq='Q-FEB')

p

[Out]: Period('2020Q4', 'Q-FEB')




pandas의 asfreq() 메소드를 사용하면 pandas Period 객체를 원하는 주기(Period frequency)로 변환할 수 있습니다. 위의 2020-Q4 의 분기 단위의 기간(Quarterly Period)를 asfreq() 메소드를 사용해 (a) 분기별 시작 날짜(starting date)와 끝 날짜(ending date), (b) 분기별 공휴일이 아닌 시작 날짜(staring business date)와 공휴일이 아닌 끝 날짜 (ending business date)로 변환해 보겠습니다. 


(a) converting from Period to Date: 'D'

(b) converting from Period to Business Date: 'B'

# starting date

p.asfreq('D', how='start')

[Out]: Period('2019-12-01', 'D')


# ending date

p.asfreq('D', how='end')

[Out]: Period('2020-02-29', 'D') 

 

# starting business date

p.asfreq('B', how='start')

[Out]: Period('2019-12-02', 'B')


# ending business date

p.asfreq('B', how='end')

[Out]: Period('2020-02-28', 'B')



 asfreq() 메소드를 chain으로 연속으로 이어서 

  (a) 분기별 ending business date를 선택하고 --> (b) starting(how-='start) minutes (freq='T' or freq='min')의 주기(frequency)로 변환한다거나, 

  (c) 분기별 ending business date를 선택하고 --> 이를 (d) ending minutes('T', or 'min') 로 변환하거나, 

  (e) 분기별 ending business date를 선택하고 --> 이를 (f) ending seconds 로 변환


하는 것이 모두 가능합니다. 



# (a) from ending Business date --> (b) to starting Minutes

p.asfreq('B', how='end').asfreq('T', how='start')

[Out]: Period('2020-02-28 00:00', 'T')


# (c) from ending Business date --> (d) to ending Minutes

p.asfreq('B', how='end').asfreq('T', how='end')

[Out]: Period('2020-02-28 23:59', 'T')



# (e) from Business date --> (f) to Seconds

p.asfreq('B', how='end').asfreq('S', how='end')

[Out]: Period('2020-02-28 23:59:59', 'S')






  (2) 분기 단위의 기간 범위 만들기 (quarterly period range)


pandas의 date_range() 함수로 날짜-시간 범위의 DatetimeIndex 객체를 만들 듯이, pandas의 period_range('start', 'end', freq='Q-[ending-month]') 함수를 사용해서 분기 단위의 기간 범위(quarterly period range)를 만들 수 있습니다.  (참고로 freq='A-DEC' 는 12월을 마지막으로 가지는 년 단위 기간(yearly period)라는 뜻이며, freq='Q-FEB'는 2월달을 마지막으로 가지는 분기 단위 기간(quarterly period)라는 뜻입니다)


아래 예는 2020-Q1 ~ 2020-Q4 기간(pd.period_range('2020Q1', '2020Q4')의 2월달을 마지막으로 하는 분기 단위의 기간(freq='Q-FEB')을 만든 것입니다. 



p_rng = pd.period_range('2020Q1', '2020Q4', freq='Q-FEB')

p_rng

[Out]:PeriodIndex(['2020Q1', '2020Q2', '2020Q3', '2020Q4'], dtype='period[Q-FEB]',

freq='Q-FEB')




asfreq()  메소드를 사용해서 위에서 생성한 '2020-Q1' ~ '2020-Q4' 기간(period with a Quarter ending at February)공휴일이 아닌 시작 날짜(staring business date)와 끝 날짜(ending business date)로 변환해보겠습니다



# convert period into deisred frequency using asfreq() methods

# starting business day per quarter 'Q-FEB'

p_rng.asfreq('B', how='start')

[Out]: 
PeriodIndex(['2019-03-01', '2019-06-03', '2019-09-02', '2019-12-02'], 
dtype='period[B]', freq='B')


# ending business day per quarter 'Q-FEB'

p_rng.asfreq('B', how='end')

[Out]: 
PeriodIndex(['2019-05-31', '2019-08-30', '2019-11-29', '2020-02-28'], 
dtype='period[B]', freq='B')

 




기간(Period) 객체를 frequency로 변환한 후에 산술 연산(arithmetic operation)이 가능합니다. 아래 예는 2월달에 끝나는 4 분기의 ending business date에 1 day 를 더한것입니다. 



# arithmatic operation: plus one day

p_rng.asfreq('B', how='end') + 1

[Out]: 
PeriodIndex(['2019-06-03', '2019-09-02', '2019-12-02', '2020-03-02'], 
dtype='period[B]', freq='B')


 



아래의 예는 period object를 ending business date로 먼저 변환하고, 이를 다시 starting hour frequency로 변환한 후에 여기에 12 hours 를 더한 것입니다. 



# period ending Business day, starting Hour

p_rng.asfreq('B', how='end').asfreq('H', how='start')

[Out]: 
PeriodIndex(['2019-05-31 00:00', '2019-08-30 00:00', '2019-11-29 00:00',
             '2020-02-28 00:00'],
            dtype='period[H]', freq='H')


# plus 12 hours

p_12h_rng = p_rng.asfreq('B', how='end').asfreq('H', how='start') + 12

p_12h_rng

[Out]:
PeriodIndex(['2019-05-31 12:00', '2019-08-30 12:00', '2019-11-29 12:00',
             '2020-02-28 12:00'],
            dtype='period[H]', freq='H')






  (3) 분기 단위의 기간과 timestamp 간 변환하기 

       (conversion between quarterly period and timestamp)



pandas date_range() 로 만든 날짜-시간 DatetimeIndex를 pandas.to_period()  메소드를 사용해서 PeriodIndex로 변환할 수 있습니다. 



import pandas as pd


# generate dates range with 12 Months

ts = pd.date_range('2020-01-01', periods = 12, freq='M')

ts

[Out]:

DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30', '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31', '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'], dtype='datetime64[ns]', freq='M')

 


# convert from DatetimeIndex to PeriodIndex

p = ts.to_period()

p

[Out]:

PeriodIndex(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05', '2020-06', '2020-07', '2020-08', '2020-09', '2020-10', '2020-11', '2020-12'],

dtype='period[M]', freq='M')




반대로,  pandas.to_timestamp() 메소드를 사용해서 PeriodIndex를 DatetimeIndex로 변환할 수 있습니다. 



# convert from PeriodIndex to DatetimeIndex with starting month('M')

p.asfreq('B', how='end').asfreq('M', how='start').to_timestamp()

[Out]:
DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01',
               '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-01',
               '2020-09-01', '2020-10-01', '2020-11-01', '2020-12-01'],
              dtype='datetime64[ns]', freq='MS')



# convert from PeriodIndex to DatatimeIndex with ending minutes('T')

p.asfreq('B', how='end').asfreq('T', how='end').to_timestamp()

DatetimeIndex(['2020-01-31 23:59:00', '2020-02-28 23:59:00',
               '2020-03-31 23:59:00', '2020-04-30 23:59:00',
               '2020-05-29 23:59:00', '2020-06-30 23:59:00',
               '2020-07-31 23:59:00', '2020-08-31 23:59:00',
               '2020-09-30 23:59:00', '2020-10-30 23:59:00',
               '2020-11-30 23:59:00', '2020-12-31 23:59:00'],
              dtype='datetime64[ns]', freq='BM')

 




  (4) 분기 기간 단위 집계 (quarterly period group by aggregation) 


간단한 월 단위 pandas Series 를 분기 단위 Period Index를 가진 Series로 변환한 후에, 분기 단위로 평균을 집계해보겠습니다. 



ts = pd.date_range('2020-01-01', periods = 12, freq='M')

ts_series = pd.Series(range(len(ts)), index=ts)

ts_series

[Out]:

2020-01-31 0 2020-02-29 1 2020-03-31 2 2020-04-30 3 2020-05-31 4 2020-06-30 5 2020-07-31 6 2020-08-31 7 2020-09-30 8 2020-10-31 9 2020-11-30 10 2020-12-31 11 Freq: M, dtype: int64


# convert from DatatimeIndex to Quarterly PeriodIndex

ts_series.index = ts.to_period(freq='Q-FEB')

ts_series

[Out]:
2020Q4     0
2020Q4     1
2021Q1     2
2021Q1     3
2021Q1     4
2021Q2     5
2021Q2     6
2021Q2     7
2021Q3     8
2021Q3     9
2021Q3    10
2021Q4    11 

Freq: Q-FEB, dtype: int64


# quarterly groupby mean aggregation

ts_series.groupby(ts_series.index).mean()

[Out]:
2020Q4     0.5
2021Q1     3.0
2021Q2     6.0
2021Q3     9.0
2021Q4    11.0
Freq: Q-FEB, dtype: float64




참고로, 아래는 resample() 메소드로 downsampling 해서 분기 단위로 평균을 집계해본 것인데요, 위의 to_period(freq='Q-FEB')로 frequency를 변환해서 groupby()로 집계한 것과 년도(2020 vs. 2021)가 서로 다릅니다. 



ts = pd.date_range('2020-01-01', periods = 12, freq='M')

ts_series = pd.Series(range(len(ts)), index=ts)

ts_series.resample('Q-FEB').mean()

[Out]:
2020-02-29     0.5
2020-05-31     3.0
2020-08-31     6.0
2020-11-30     9.0
2021-02-28    11.0
Freq: Q-FEB, dtype: float64

 



resample 시 kind='period' 옵션을 설정해주면 ts.to_period(freq='Q-FEB') 를 groupby 한 결과와 동일한 값을 얻을 수 있습니다. 



ts_series.resample('Q-FEB', kind='period').mean()

[Out]:
2020Q4     0.5
2021Q1     3.0
2021Q2     6.0
2021Q3     9.0
2021Q4    11.0
Freq: Q-FEB, dtype: float64

 




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
Posted by R Friend Rfriend

댓글을 달아 주세요