지난번 포스팅에서는 불균형 데이터(imbalanced data)가 무엇이고, 분류 모델링 시 무엇이 문제인지에 대해서 알아보았습니다. --> https://rfriend.tistory.com/773

이번 포스팅부터는 불균형 데이터를 가지고 분류 모델링 시 대처방법에 대해서 몇 번에 나누어서 이론과 Python을 활용한 코드를 소개하겠습니다.  먼저 (3-1) 소수 클래스의 데이터 추가 수집과 (3-2) 불균형 데이터 분류 모델에 적합한 성능평가 지표 선정 부터 시작해볼까요? 

 


[ 불균형 데이터로 분류 모델링하는 방법 ]
  1. 소수 클래스의 데이터 추가 수집 (Get more minority data) 
  2. 불균형 데이터 분류 모델에 적합한 성능평가 지표 선정 
       (evaluation metrics for imbalanced classification)  

  3. 샘플링 방법 (Sampling methods)
    3-1. Undersampling
      : Random Sampling, Tomek Links
    3-2. Oversampling
      : Resampling, SMOTE, Borderline SMOTE, ADASYN
  4. 비용 또는 가중치 조정 방법 (Cost, Weight)
  5. Outlier detection 방법
      : One-class SVM, Isolation Forest, DBSCAN clustering
  6. 확률 튜닝 알고리즘 (Probability Tuning Algorithms)



1. 소수 클래스의 데이터 추가 수집 (Get more minority data)

만약 소수 집단의 데이터를 추가로 수집하거나 또는 생성할 수 있다면 두 집단의 구성비가 균형을 잡히도록 소수 집단의 개수를 늘리면 되겠습니다. 

하지만, 데이터를 수집하는데는 시간과 비용 (time and cost) 이 소요된다는 점, 상황에 따라서는 소수 데이터의 추가 수집이 불가능하다는 점도 고려를 해야겠습니다. 이런 제약사항 때문에 알고리즘적으로 불균형 데이터 문제를 해결하는 방법을 알아둘 필요가 있습니다. 
(다음번 포스팅부터 소개해요)

 

 

 

2. 불균형 데이터 분류 모델에 적합한 성능평가 지표 선정 
     (evaluation metrics for imbalanced classification)

 

균형 데이터 (balanced data)에 대한 
 - 분류 모델의 성능 평가 지표에 대한 이론은 https://rfriend.tistory.com/771 를 참고하구요, 
 - Python 을 이용한 분류 모델의 성능 평가 코드는 https://rfriend.tistory.com/772 를 참고하세요. 

불균형 데이터 (imbalanced data)에 대한 분류 모델 평가 지표를 선정하는 데는 
 (a) 범주와 확률 중에서 무엇을 예측하는가? 
 (b) 두 범주가 동등하게 중요한가? 아니면 양성(Positive) 범주가 더 중요한가?
 (c) False Negative, False Positive 가 동등하게 중요한가? 아니면 둘 중 하나가 더 중요한가?
의 질문에 대한 답변 별로 평가 지표가 달라집니다. 
(아래의 ‘불균형 데이터에 대한 이진 분류 모델 평가 지표’ 참조) 

Performance Metrics of Binary Classification for Imbalanced Data

 

 

 

(1) 범주(class labels)를 예측하고, 두 범주가 동등하게 중요하며, 다수 범주가 80~90% 이상으로서 불균형 데이터(imbalanced data)인 경우 

       --> Geometirc-Mean (or G-Mean) 

G-Mean = sqrt(Sensitivity x Specificity)

 

기하평균 G-Mean 은 다수 집단 (Majority class)과 소수 집단 (Minority class) 간 모두의 분류 성능을 측정하는 지표입니다. 낮은 G-Mean 점수는 비록 음성 사례(negative cases)가 정확하게 분류가 되더라도 양성 사례(positive cases)의 분류는 저조한 성능을 보인다는 뜻입니다. G-Mean 지표는 음성 범주(negative class)의 과적합(over-fitting)을 피하고, 양성 범주(positive class)의 과소 적합(under-fitting)을 피하는데 중요하게 사용됩니다. 

 

(2) 범주를 예측하고, 두 범주가 동등하게 중요하며, 다수 범주가 80~90% 미만인 균형 데이터(balanced data)는

      --> 정확도(Accuracy) 평가지표를 사용하면 됩니다.

하지만, 불균형 데이터에 대해서 정확도 지표를 사용할 경우 다수 집단 만을 잘 분류하고 소수 집단에 대해서는 제대로 분류를 못해도 높은 정확도 점수가 나오는 문제가 있습니다. 

 

 

confusion matrix and performance metrics for the binary classification model
Geometric Mean, G-Mean

 

 

 

(3) 범주 (class labels) 를 예측하고, 양성 범주 (Positive class)가 더 중요하며, 

      - False Negative, False Positve 가 동등하게 중요하면 (Sensitivity, Precision이 균형있으면 좋은 모델)   
         --> F1 Score

      - False Negative 가 더 비용이 크면 (Sensitivity가 높으면 좋은 모델)   --> F2 Score

      - False Positive 가 더 비용이 크면  (Precision이 높으면 좋은 모델)       --> F0.5 Score

를 사용합니다. 

 

 

F1 Score, F0.5 Score, F2 Score 는 높으면 높을수록 더 좋은 모델로 해석합니다.  

참고로, 두 개의 범주가 바뀌어서 양성(Positive)이 음성(Negative)으로, 음성은 양성으로 바뀐 상태에서 혼돈 매트릭스를 만들어서 F2 Score를 계산하면 Inv F0.5 Score 가 됩니다. [2]

 

F-Measures: F1 score, F0.4 score, F2 score, F_beta score

 

 

아래는 불균형 데이터에 대한 분류 모델의 혼돈 매트릭스를 3가지 시나리오 별로 가상으로 구성하여, 민감도(Sensitivity), 정밀도(Precision), F1 Score, F0.5 Score, F2 Score 를 계산해본 것입니다. 위 설명을 이해하는데 도움이 되기를 바랍니다. 

 

 

(a) F1 Score는 정밀도(Precision)와 민감도(Sensitivity) 의 역수의 산술평균의 역수인 조화평균(Harmonic Mean)으로서, 정밀도와 민감도 간의 균형을 측정합니다. 만약 정밀도나 민감도가 0 이라면 F-Measure 는 0 이됩니다. F1 Score는 False Negative 와 False Positive가 동등하게 중요할 때의 모델 성능지표로 적합합니다. 민감도(Sensitivity)와 정밀도(Precision)이 균형있을 때 F1 Score가 높게 나옵니다. 

 

False Negative와 False Positive 가 동등하게 중요한 경우

 

 

(b) 불균형 데이터 (imbalanced data)인 경우에는 F0.5 Score 또는 F2 Score 를 사용하는데요, 비즈니스적으로 중요한 소수 범주(minority class)의 False Negative 가 더 비용(cost)이 크면(즉, Sensitivity가 높은 모델이 더 좋은 모델로서, Sensitiviey에 가중치를 더 줌) F2 Score 를 사용합니다. 예측된 양성이 비록 틀리는 비용을 감수하고서라도, 실제 양성(Positive)을 하나라도 더 분류해내고 싶을 때 F2 Score 지표를 사용합니다. 

 

False Negative 가 더 비용이 큰 경우

 

 

 

(c) 반대로, False Positive 가 비용이 더 크면(즉, (Precision이 높은 모델이 더 좋은 모델로서, Precision에 가중치를 더 줌) F0.5 Score를 모델 성능지표를 선택합니다. 실제 양성을 놓치는 비용을 감수하고서라도, 일단 모델이 양성으로 분류를 했으면 실제로도 양성이기를 바라는 경우에 F0.5 Score 지표를 사용합니다. 

 

False Positive 가 더 비용이 큰 경우

 

 

 

(4) 확률(Probability)을 예측하고, 확률 예측치의 정확도를 평가하고 싶을 때

      --> Brier Score

 

Brier Score 는 확률 예측치의 정확도(accuracy of probability forecast)를 평가할 때 사용합니다. Brier Score 는 두개의 범주(bianry categories)를 가진 이진 분류(binary classification)의 예측 확률에만 사용할 수 모델 평가지표 입니다. [3]

Brier Score의 수식은 아래와 같이 모든 관측치에 대해서 예측확률과 실제 결과(발생하면 1, 아니면 0)와의 차이의 제곱합(Squared Summation)을 관측치의 개수로 나누어서 구한 ‘평균 제곱합 확률 오차(MSE, Mean Squared Error)’ 입니다. 

 

Brier Score

 


Brier Score 는 작으면 작을 수록 이진 분류 모델의 확률 예측치가 정확하다는 뜻이며, 반대로 크면 클 수록 이진 분류 모델의 확률 예측치가 부정확하다고 해석합니다. 

- 모든 확률 예측치에 대해서 완벽하게 모두 다 맞추면 Brier Score 는 0 이 됩니다. (최소값) 
- 반대로, 모든 확률 예측치가 완벽하게 다 틀리면 Brier Score 는 1 이 됩니다. (최대값) 

 

 

 

(5) 확률을 예측하고, 범주가 필요하며, 양성(Positive) 범주가 더 중요한 불균형 데이터의 경우 
   —> Precision-Recall Curve Plot, Precision-Recall AUC (Area Under the Curve)


Precision-Recall Curve 그림은 X축이 Recall, Y축이 Precision으로 해서, 두 범주를 분류하는 확률의 의사결정 기준점(Decision Treshold)을 0에서 1로 조금씩 변경해가면서 혼돈 매트릭스를 계산하고, 이어서 Precision과 Recall을 계산한 후에, 이 값들을 선으로 연결한 그래프입니다. 


아래의 그래프처럼 Precision-Recall Curve 가 우측 상단으로 붙을 수록 불균형 데이터의 양성(Positive)을 더 잘 분류하는 모델이라고 평가할 수 있습니다. (Precision 과 Recall 은 Trade-off 관계에 있음). 

 

Precision-Recall Curve Plot

 


ROC AUC 처럼, Precision-Recall Curve 의 아래 부분의 면적을 적분한 값이 PR AUC (Precision-Recall Area Under the Curve) 값이 됩니다. 하나의 score 로 계산이 되므로, 여러 모델을 수치적으로 비교할 수 있습니다. PR AUC가 크면 클 수록 소수의 양성 범주(minority Positive class) 를 잘 분류하는 모델이라고 평가할 수 있습니다. 

 

PR AUC (Precision-Recall Area Under the Curve)

 

 

 

[ Reference ] 

(1) Tour of Evaluation Metrics for Imbalanced Classification
: https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/

(2) "F-score" from Wikipedia: https://en.wikipedia.org/wiki/F-score

(3) Brier Score: https://www.statisticshowto.com/brier-score/

 

728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 마지막 네번째 포스팅으로서, 12개의 설명변수를 사용하여 유방암 악성, 양성 여부 진단하는 로지스틱 회귀모형을 훈련 데이터셋으로 적합시켜보고, 테스트셋에 대해 모델 성능을 평가하며, 모델의 회귀계수를 가지고 해석을 해보겠습니다. 


[로지스틱 회귀분석을 통한 유방암 예측(분류) 포스팅 순서]

  1. WDBC(Wisconsin Diagnostic Breast Cancer) dataset 소개 및 분석 목적과 방향 설정
  2. 탐색적 데이터 분석 및 전처리
  3. 1차 변수 선택 및 목표변수와 설명변수 간 관계 분석
  4. 로지스틱 회귀모형 적합 및 모델 평가, 해석



이번 포스팅은 아래의 순서대로 분석을 진행해보겠습니다. 

(탐색적 데이터 분석 및 전처리는 이전 포스팅 참고 => http://rfriend.tistory.com/400)


(1) training set (80%) vs. test set (20%) 분리

(2) 로지스틱 회귀모형 적합 (w/ training set)

(3) 후진 소거법 (backward elimination)

(4) 모델 성능 평가 (w/ test set) : confusion matrix, ROC curve

(5) 모델 해석



  (1) training set (80%) vs. test set (20%) 분리


569개 관측치를 가진 데이터셋을 (a) 모형 적합에 사용할 훈련용 데이터셋(training set), (b) 모형 성능 평가에 사용할 테스트 데이터셋(test set) 으로 나누어 보겠습니다. 이번 포스팅에서는 training : test 를 8:2 비율로 나누어서 분석하였습니다. 


만약 training set으로 훈련한 모델의 정확도는 높은데 test set을 대상으로 한 정확도는 낮다면 과적합(overfitting)을 의심해볼 수 있습니다. 




로지스틱 회귀모형을 적합하는데는 나중에 회귀계수 해석하기에 용이하도록 표준화하기 이전의 원래의 데이터를 사용하였으며, training : test = 8:2 로 나누기 위해 base패키지의 sample() 함수를 사용하여 indexing을 위한 무작위 index를 생성해두었습니다. 


참고로, 아래 코드의 train, test, Y.test에는 관측치 측정치가 들어있는 것이 아니라 나중에 indexing을 위한 index 정보 (랜덤 샘플링 indexing 할 위치 정보)가 들어 있습니다. 다음번 glm() 함수에서 subset argument에 train, test index를 사용할 예정입니다. 



> ##=========================

> ## fitting logistic regression

> #----------

> # data set with 12 input variable and Y variable

> wdbc_12 <- data.frame(Y, wdbc[,x_names_sorted])

> str(wdbc_12)

'data.frame': 569 obs. of  13 variables:

 $ Y                      : num  1 1 1 1 1 1 1 1 1 1 ...

 $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...

 $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...

 $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...

 $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...

 $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...

 $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...

 $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...

 $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...

 $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...

 $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...

 $ area_worst             : num  2019 1956 1709 568 1575 ...

 $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...

> # split train(0.8) and test set(0.2)

> set.seed(123) # for reproducibility

> train <- sample(1:nrow(wdbc_12), size=0.8*nrow(wdbc_12), replace=F)

> test <- (-train)

> Y.test <- Y[test]

 




  (2) 로지스틱 회귀모형 적합 (w/ training set)


R의 stats 패키지의 glm() 함수로 training set의 12개 설명변수를 모두 사용하여 로지스틱 회귀모형을 적합하여 보겠습니다. 회귀계수 모수 추정은 최대가능도추정(Maximum Likelihood Estimation)법을 통해서 이루어집니다. 




참고로, GLM 모형의 family 객체에 들어갈 random components 와 link components 에 사용할 수 있는 arguments 는 아래와 같습니다. 


[ Family Objects for Models ]


binomial(link = "logit")  # logistic regression model

poisson(link = "log") # poisson regression model

gaussian(link = "identity") # linear regression model

Gamma(link = "inverse") # gamma regression model

inverse.gaussian(link = "1/mu^2")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log") 




> # train with training set

> glm.fit <- glm(Y ~ ., 

+                data = wdbc_12, 

+                family = binomial(link = "logit")

+                subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit)


Call:

glm(formula = Y ~ ., family = binomial(link = "logit"), data = wdbc_12, 

    subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.8232  -0.0662  -0.0074   0.0001   3.8847  


Coefficients:

                           Estimate  Std. Error z value Pr(>|z|)    

(Intercept)              -36.903201    9.099492  -4.056  0.00005 ***

concavity_se              29.311264   22.989079   1.275 0.202306    

compactness_se          -100.786803   36.755041  -2.742 0.006104 ** 

fractal_dimension_worst   37.094117   43.007209   0.863 0.388407    

symmetry_mean             19.015372   30.163882   0.630 0.528432    

smoothness_mean         -109.619744   74.382548  -1.474 0.140554    

concave.points_se       -123.097155  203.980072  -0.603 0.546192    

texture_mean               0.393147    0.107909   3.643 0.000269 ***

symmetry_worst            13.278414   10.461508   1.269 0.204347    

smoothness_worst         105.722805   35.197258   3.004 0.002667 ** 

perimeter_se               1.033524    0.780904   1.323 0.185670    

area_worst                 0.013239    0.003786   3.496 0.000472 ***

concave.points_mean      104.113327   46.738810   2.228 0.025910 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  60.175  on 442  degrees of freedom

AIC: 86.175


Number of Fisher Scoring iterations: 10

 


각 회귀계수의 유의성을 Wald-test()를 통해 해보면 'concave.points_se' 변수가 p-value가 0.54192이므로 유의수준 5% 하에서 [귀무가설(H0): 회귀계수 beta(concave.points_se) = 0]을 채택합니다. 즉, 반응변수에 concave.points_se 변수는 별 영향 혹은 관련이 없다고 판단할 수 있습니다. 따라서 제거를 해도 되겠습니다. 



Wald Test

  • 통계량  
  • 귀무가설(): 회귀계수 
  • 대립가설(): 회귀계수 




  (3) 후진 소거법 (backward elimination)


위의 (2)번 처럼 전체 변수를 포함한 full model (saturated model)에서 시작해서, 가장 유의미하지 않은 변수(가장 큰 p-value 값을 가지는 변수)를 제거하고, 다시 모형을 적합하고, 남은 예측변수가 모두 유의할 때까지 계속 순차적으로 가장 유의미하지 않은 변수를 계속 제거해나가는 후진 소거법(backward elimination)을 사용해서 모델을 적합하겠습니다. 이로써, 모델의 정확도는 어느정도 유지하면서도 해석하기에 용이한 가장 간소한(parsimonious) 모델을 만들어보겠습니다. 



> # Backward Elimination Approach

> # remove 'concave.points_se' variable

> glm.fit.2 <- glm(Y ~ concave.points_mean + area_worst + 

+                    perimeter_se + smoothness_worst + symmetry_worst +

+                    texture_mean + smoothness_mean + symmetry_mean + 

+                    fractal_dimension_worst + compactness_se + concavity_se, 

+                  data = wdbc_12, 

+                  family = binomial(link = "logit")

+                  subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit.2)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + 

    smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + 

    symmetry_mean + fractal_dimension_worst + compactness_se + 

    concavity_se, family = binomial(link = "logit"), data = wdbc_12, 

    subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.8363  -0.0645  -0.0076   0.0001   3.8297  


Coefficients:

                           Estimate  Std. Error z value  Pr(>|z|)    

(Intercept)              -37.182194    8.981711  -4.140 0.0000348 ***

concave.points_mean       87.773808   37.117336   2.365  0.018041 *  

area_worst                 0.013785    0.003734   3.692  0.000222 ***

perimeter_se               0.894502    0.747623   1.196  0.231517    

smoothness_worst         104.169968   35.281001   2.953  0.003151 ** 

symmetry_worst            15.057387   10.048439   1.498  0.134009    

texture_mean               0.385946    0.105254   3.667  0.000246 ***

smoothness_mean         -103.800173   73.953483  -1.404  0.160442    

symmetry_mean             10.952803   26.586484   0.412  0.680362    

fractal_dimension_worst   42.376803   42.322307   1.001  0.316688    

compactness_se           -98.379602   35.688499  -2.757  0.005840 ** 

concavity_se              18.847381   13.973683   1.349  0.177409    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  60.551  on 443  degrees of freedom

AIC: 84.551


Number of Fisher Scoring iterations: 10


> # remove 'symmetry_mean' variable

> glm.fit.3 <- glm(Y ~ concave.points_mean + area_worst + 

+                    perimeter_se + smoothness_worst + symmetry_worst +

+                    texture_mean + smoothness_mean + 

+                    fractal_dimension_worst + compactness_se + concavity_se, 

+                  data = wdbc_12, 

+                  family = binomial(link = "logit")

+                  subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit.3)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + 

    smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + 

    fractal_dimension_worst + compactness_se + concavity_se, 

    family = binomial(link = "logit"), data = wdbc_12, subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.7842  -0.0630  -0.0083   0.0001   3.7588  


Coefficients:

                          Estimate Std. Error z value  Pr(>|z|)    

(Intercept)             -36.121685   8.504448  -4.247 0.0000216 ***

concave.points_mean      89.488263  37.243081   2.403  0.016269 *  

area_worst                0.013329   0.003532   3.774  0.000161 ***

perimeter_se              0.976273   0.722740   1.351  0.176762    

smoothness_worst        100.865240  33.783402   2.986  0.002830 ** 

symmetry_worst           17.885605   7.503047   2.384  0.017136 *  

texture_mean              0.382870   0.103885   3.686  0.000228 ***

smoothness_mean         -95.335007  70.234774  -1.357  0.174662    

fractal_dimension_worst  40.176580  41.722080   0.963  0.335569    

compactness_se          -97.950160  35.684347  -2.745  0.006053 ** 

concavity_se             19.800333  13.655596   1.450  0.147064    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  60.721  on 444  degrees of freedom

AIC: 82.721


Number of Fisher Scoring iterations: 10


> # remove 'fractal_dimension_worst' variable

> glm.fit.4 <- glm(Y ~ concave.points_mean + area_worst + 

+                    perimeter_se + smoothness_worst + symmetry_worst +

+                    texture_mean + smoothness_mean + 

+                    compactness_se + concavity_se, 

+                  data = wdbc_12, 

+                  family = binomial(link = "logit")

+                  subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit.4)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + 

    smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + 

    compactness_se + concavity_se, family = binomial(link = "logit"), 

    data = wdbc_12, subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.6650  -0.0653  -0.0079   0.0001   3.9170  


Coefficients:

                       Estimate  Std. Error z value  Pr(>|z|)    

(Intercept)          -33.656002    7.809704  -4.310 0.0000164 ***

concave.points_mean   96.137001   36.867939   2.608  0.009118 ** 

area_worst             0.012905    0.003435   3.757  0.000172 ***

perimeter_se           0.676729    0.642490   1.053  0.292208    

smoothness_worst     109.530724   32.239695   3.397  0.000680 ***

symmetry_worst        19.724732    7.543696   2.615  0.008930 ** 

texture_mean           0.381544    0.103567   3.684  0.000230 ***

smoothness_mean     -101.037553   70.839248  -1.426  0.153784    

compactness_se       -80.383972   30.461425  -2.639  0.008318 ** 

concavity_se          20.771502   14.372162   1.445  0.148385    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  61.657  on 445  degrees of freedom

AIC: 81.657


Number of Fisher Scoring iterations: 10


> # remove 'perimeter_se' variable

> glm.fit.5 <- glm(Y ~ concave.points_mean + area_worst + smoothness_worst + 

+                    symmetry_worst + texture_mean + smoothness_mean + 

+                    compactness_se + concavity_se, 

+                  data = wdbc_12, 

+                  family = binomial(link = "logit")

+                  subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit.5)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + smoothness_worst + 

    symmetry_worst + texture_mean + smoothness_mean + compactness_se + 

    concavity_se, family = binomial(link = "logit"), data = wdbc_12, 

    subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.7487  -0.0602  -0.0079   0.0002   4.2383  


Coefficients:

                      Estimate Std. Error z value  Pr(>|z|)    

(Intercept)         -33.156014   7.674110  -4.321 0.0000156 ***

concave.points_mean  98.900172  35.529247   2.784   0.00538 ** 

area_worst            0.013819   0.003339   4.139 0.0000349 ***

smoothness_worst    105.448378  32.444984   3.250   0.00115 ** 

symmetry_worst       17.412883   6.654537   2.617   0.00888 ** 

texture_mean          0.385751   0.102180   3.775   0.00016 ***

smoothness_mean     -89.410469  70.307291  -1.272   0.20348    

compactness_se      -78.009472  29.946520  -2.605   0.00919 ** 

concavity_se         24.607453  13.153360   1.871   0.06137 .  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  62.777  on 446  degrees of freedom

AIC: 80.777


Number of Fisher Scoring iterations: 10


> # remove 'smoothness_mean' variable

> glm.fit.6 <- glm(Y ~ concave.points_mean + area_worst + smoothness_worst + 

+                    symmetry_worst + texture_mean +  

+                    compactness_se + concavity_se, 

+                  data = wdbc_12, 

+                  family = binomial(link = "logit"), 

+                  subset = train)

Warning message:

glm.fit: 적합된 확률값들이 0 또는 1 입니다 

> summary(glm.fit.6)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + smoothness_worst + 

    symmetry_worst + texture_mean + compactness_se + concavity_se, 

    family = binomial(link = "logit"), data = wdbc_12, subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.8607  -0.0640  -0.0080   0.0002   4.0912  


Coefficients:

                      Estimate Std. Error z value     Pr(>|z|)    

(Intercept)         -39.164619   6.748646  -5.803 0.0000000065 ***

concave.points_mean  73.504634  27.154772   2.707     0.006792 ** 

area_worst            0.015465   0.003248   4.762 0.0000019175 ***

smoothness_worst     78.962941  23.746808   3.325     0.000884 ***

symmetry_worst       17.429475   6.497808   2.682     0.007310 ** 

texture_mean          0.423250   0.099815   4.240 0.0000223171 ***

compactness_se      -79.556564  29.747330  -2.674     0.007486 ** 

concavity_se         27.279384  12.093534   2.256     0.024089 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  64.446  on 447  degrees of freedom

AIC: 80.446


Number of Fisher Scoring iterations: 10

 



(2)의 12개 설명변수를 사용한 full model에서 시작해서 (3)의 후진소거법(backward elimination)에 의해 5개의 변수를 하나씩 순차적으로 제거하면서 적합한 모형의 결과를 표로 정리하면 아래와 같습니다. 


자유도(df) 대비 이탈도(deviance)와의 차이가 거의 없으므로 후진소거법에 의해 변수를 제거해도 모델에는 별 영향이 없음을 알 수 있습니다. 그리고 AIC(= -2(로그가능도 - 모형에 있는 모수 개수)) 기준에 의하면 6번째 모형 (concave.points_se, symmetry_mean, fractal_dimension_worst, perimeter_se, smoothness_mean 제거한 모형)이 가장 우수한 모형임을 알 수 있습니다.(AIC 값이 가장 작으므로)



6번째 모델의 '귀무가설 H0: 모든 회귀계수 = 0 (무가치한 모형)'에 대한 가능도비 검정(likelihood ratio test) 결과, 


 

> # likelihood ratio test

> LR_statistic = 601.380 - 64.446

> LR_statistic

[1] 536.934

pchisq(LR_statistic, df = (454-447), lower.tail = F)

[1] 9.140339e-112




이므로 적어도 하나의 설명변수는 반응변수를 예측하는데 유의미한 관련이 있다고 볼 수 있다. 



그리고 각 설명변수별 Wald-test 결과 p-value(Pr(>|z|) 가 모두 0.05보다 작으므로, 유의수준 5% 하에서 모두 유의미하다(즉, 반응변수와 관련이 있다)고 판단할 수 있다. 



summary(glm.fit.6)


Call:

glm(formula = Y ~ concave.points_mean + area_worst + smoothness_worst + 

    symmetry_worst + texture_mean + compactness_se + concavity_se, 

    family = binomial(link = "logit"), data = wdbc_12, subset = train)


Deviance Residuals: 

    Min       1Q   Median       3Q      Max  

-1.8607  -0.0640  -0.0080   0.0002   4.0912  


Coefficients:

                      Estimate Std. Error z value     Pr(>|z|)    

(Intercept)         -39.164619   6.748646  -5.803 0.0000000065 ***

concave.points_mean  73.504634  27.154772   2.707     0.006792 ** 

area_worst            0.015465   0.003248   4.762 0.0000019175 ***

smoothness_worst     78.962941  23.746808   3.325     0.000884 ***

symmetry_worst       17.429475   6.497808   2.682     0.007310 ** 

texture_mean          0.423250   0.099815   4.240 0.0000223171 ***

compactness_se      -79.556564  29.747330  -2.674     0.007486 ** 

concavity_se         27.279384  12.093534   2.256     0.024089 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


    Null deviance: 601.380  on 454  degrees of freedom

Residual deviance:  64.446  on 447  degrees of freedom

AIC: 80.446


Number of Fisher Scoring iterations: 10

 




로지스틱 회귀계수의 95% 신뢰구간은 confint() 함수를 통해 구할 수 있습니다. 



> confint(glm.fit.6)

Waiting for profiling to be done...

                            2.5 %       97.5 %

(Intercept)         -5.483332e+01 -27.92705624

concave.points_mean  2.353047e+01 131.95158315

area_worst           9.906713e-03   0.02282079

smoothness_worst     3.617243e+01 131.06234268

symmetry_worst       6.422548e+00  32.73189772

texture_mean         2.428527e-01   0.64064918

compactness_se      -1.411215e+02 -15.15533223

concavity_se        -1.259598e+01  49.25042906

 




  (4) 모델 성능 평가 (w/ test set) : confusion matrix, ROC curve


모델 성능 평가는 훈련용 데이터셋이 아니라 반드시 테스트셋(test set)을 대상으로 진행해야 합니다! 


(a) confusion matrix를 이용한 분류 정확도, 오분류율을 구해보고, (b) ROC 곡선도 그려보겠습니다. 


(a) Confusion matrix, accuracy, test error rate


cutoff 기준을 이면 이면 으로 예측을 하면, 양성 72개는 모두 양성으로 전부 정확하게 분류를 하였으며, 악성 42개에 대해서는 41개를 악성으로 정확하게 분류하고 1개는 양성으로 오분류 하였습니다. 


따라서 정확도(accuracy) = (TP + TN) / N = (72 + 41)/ 114 = 0.9912281 로서 매우 높게 나왔습니다. 유방암 예측(악성, 양성 분류) 로지스틱 회귀모형이 잘 적합되었네요. 



> # calculate the probabilities on test set

> glm.probs <- predict(glm.fit.6, wdbc_12[test,], type="response")

> glm.probs[1:20]

                6                 8                10                11                12 

0.986917125953939 0.992018931502162 0.998996856414432 0.992792364235021 0.999799557490392 

               13                25                35                39                54 

0.999938548975209 1.000000000000000 0.999981682993826 0.003031968742568 0.999978684326258 

               61                67                72                77                86 

0.000024521469882 0.000434266606978 0.000000006158534 0.002210951131364 0.999999952448192 

               92                98               106               108               115 

0.923496652258054 0.000007994931448 0.998688178459914 0.000576845750543 0.000149114805822 

> # compute the predictions with the threshold of 0.5

> glm.pred <- rep(0, nrow(wdbc_12[test,]))

> glm.pred[glm.probs > .5] = 1

> table(Y.test, glm.pred)

      glm.pred

Y.test  0  1

     0 72  0

     1  1 41

> mean(Y.test == glm.pred) # accuracy

[1] 0.9912281

> mean(Y.test != glm.pred) # test error rate

[1] 0.00877193

 



(b) ROC 곡선 (ROC curve), AUC (The Area Under an ROC Curve)


cutoff 별  'False Positive Rate(1-Specificity)', 'True Positive Rate(Sensitivity)' 값을 연속적으로 계산하여 ROC 곡선을 그려보면 아래와 같습니다. 대각선이 random guessing 했을 때를 의미하며, 대각선으로부터 멀리 떨어져서 좌측 상단으로 곡선이 붙을 수록 더 잘 적합된 모형이라고 해석할 수 있습니다. 


AUC(Area Under an ROC Curve)는 ROC 곡선 아래 부분의 면적의 합이며, 1이면 완벽한 모델, 0.5면 random guessing한 모델의 수준입니다. AUC가 0.9 이상이면 매우 우수한 모형이라고 할 수 있습니다. 


이번 로지스틱회귀모형은 ROC 곡선을 봐서도 그렇고, AUC가 0.9933로서 아주 잘 적합된 모형이네요. 



> # ROC curve

> install.packages("ROCR")

> library(ROCR)

> pr <- prediction(glm.probs, Y.test)

> prf <- performance(pr, measure = "tpr", x.measure = "fpr")

> plot(prf, main="ROC Curve")




> # AUC (The Area Under an ROC Curve)

> auc <- performance(pr, measure = "auc")

> auc <- auc@y.values[[1]]

> auc

[1] 0.9933862

> detach(wdbc)





  (5) 모델 해석


최종 적합된 로지스틱 회귀모형식은 아래와 같습니다. 

(워드 수식입력기에서 '_'를 입력하니 자꾸 '.'으로 자동으로 바뀌는 바람에 변수이름 구분자 '_'가 전부 '.'로 잘못 입력되었습니다....)




위의 최종 모형으로 부터 다른 설명변수가 고정(통제)되었을 때 설명변수 가 한단위 증가할 때 유방암 악성(M)일 확률의 오즈(odds)는 exp() 배만큼 증가한다는 뜻입니다. 


가령, texture_mean 의 회귀계수가0.42 이므로 이를 해석하자면, 다른 설명변수들이 고정되었을 때 texture_mean이 한 단위 증가할 때 유방암 악성일 확률의 오즈(odds)는 exp(0.42)=1.52 배 증가한다는 뜻입니다. 


악성 유방암일 확률은  

식을 사용해서 구할 수 있습니다. (위의 식 beta_hat 에 추정한 회귀계수를 대입해고 x 값에 관측값을 대입해서 풀면 됩니다)


많은 도움이 되었기를 바랍니다. 


그동안 4번에 걸쳐서 로지스틱 회귀모형 분석에 대해 연재를 했는데요, 혹시 포스팅에 잘못된 부분이나 궁금한 부분이 있으면 댓글로 남겨주시면 수정, 보완하도록 하겠습니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. ^^



728x90
반응형
Posted by Rfriend
,