지난번 WDBC(Wisconsin Diagnostic Breast Cancer) dataset 소개 및 분석 목적과 방향 설정 포스팅에 이어서, 이번 포스팅은 두번째 순서로 'WDBC 데이터셋에 대한 탐색적 데이터 분석과 전처리'에 대해서 알아보겠습니다. 



[로지스틱 회귀분석을 통한 유방암 예측(분류) 포스팅 순서]

  1. WDBC(Wisconsin Diagnostic Breast Cancer) dataset 소개 및 분석 목적과 방향 설정
  2. 탐색적 데이터 분석 및 전처리
  3. 1차 변수 선택 및 목표변수와 설명변수 간 관계 분석
  4. 로지스틱 회귀모형 적합 및 모델 평가, 해석



지난번 첫번째 포스팅에서 데이터 셋 가져와서 DataFrame으로 만들었을 때 사용했던 R코드는 아래와 같습니다. 



rm(list=ls())

options(scipen=30)


# data loading: WDBC (Wisconsin Diagnostic Breast Cancer)

library(data.table)

library(curl)


url <- c("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data")

wdbc <- data.frame(fread(url))

str(wdbc)


# column names

colnames(wdbc) <- c("id", "diagnosis", "radius_mean", "texture_mean", 

                    "perimeter_mean", "area_mean", "smoothness_mean", "compactness_mean",

                    "concavity_mean", "concave.points_mean", "symmetry_mean", "fractal_dimension_mean", 

                    "radius_se", "texture_se", "perimeter_se", "area_se", 

                    "smoothness_se", "compactness_se", "concavity_se", "concave.points_se", 

                    "symmetry_se", "fractal_dimension_se", "radius_worst", "texture_worst", 

                    "perimeter_worst", "area_worst", "smoothness_worst", "compactness_worst", 

                    "concavity_worst", "concave.points_worst", "symmetry_worst", "fractal_dimension_worst")


str(wdbc)

head(wdbc, 2)

 



이렇게 불러온 WDBC DataFrame에 대해서 


(1) 결측값 확인 및 처리

(2) 중복 데이터 확인 및 처리

(3) 목표변수 범주/계급 구성 분포 확인 및 처리

(4) 설명변수 간 다중공선성 확인 및 처리

(5) 표준화, 척도 변환


의 순서로 탐색적 데이터 분석(EDA: Exploratory Data Analysis) 및 데이터 전처리(Data Preprocessing)를 해보겠습니다. 



 (1) 결측값 (Missing Value) 확인 및 처리


is.na() 함수를 사용해서 결측값 여부를 확인 결과 다행히도 결측값이 없네요.  데이터셋 설명된 사이트에 보면 처음에는 결측값이 있었다고 하는데요, 지금 사용하는 데이터셋은 결측값을 다 제거한 자료네요. 


혹시 결측값이 있다면 http://rfriend.tistory.com/34 포스팅을 참고하여 분석 목적에 맞게 결측값을 처리하시기 바랍니다. 



> attach(wdbc)

The following objects are masked from wdbc (pos = 3):


    area_mean, area_se, area_worst, compactness_mean, compactness_se, compactness_worst,

    concave.points_mean, concave.points_se, concave.points_worst, concavity_mean,

    concavity_se, concavity_worst, diagnosis, fractal_dimension_mean,

    fractal_dimension_se, fractal_dimension_worst, id, perimeter_mean, perimeter_se,

    perimeter_worst, radius_mean, radius_se, radius_worst, smoothness_mean,

    smoothness_se, smoothness_worst, symmetry_mean, symmetry_se, symmetry_worst,

    texture_mean, texture_se, texture_worst


> # check missing value

> colSums(is.na(wdbc)) # no missing value, good

                     id               diagnosis             radius_mean            texture_mean 

                      0                       0                       0                       0 

         perimeter_mean               area_mean         smoothness_mean        compactness_mean 

                      0                       0                       0                       0 

         concavity_mean     concave.points_mean           symmetry_mean  fractal_dimension_mean 

                      0                       0                       0                       0 

              radius_se              texture_se            perimeter_se                 area_se 

                      0                       0                       0                       0 

          smoothness_se          compactness_se            concavity_se       concave.points_se 

                      0                       0                       0                       0 

            symmetry_se    fractal_dimension_se            radius_worst           texture_worst 

                      0                       0                       0                       0 

        perimeter_worst              area_worst        smoothness_worst       compactness_worst 

                      0                       0                       0                       0 

        concavity_worst    concave.points_worst          symmetry_worst fractal_dimension_worst 

                      0                       0                       0                       0

> sum(is.na(wdbc))

[1] 0





  (2) 중복 데이터 (Duplicated Data) 확인 및 처리


다음으로 duplicated() 함수를 사용해서 중복 데이터가 있는지 확인해보았는데요, 다행히도 중복 데이터는 없네요. ^^


혹시 중복 데이터가 있다면 유일한 값을 선별하는 방법은 http://rfriend.tistory.com/165 포스팅을 참고하시기 바랍니다. 



> # check duplicated data

> sum(duplicated(wdbc)) # no duplicated data, good~!

[1] 0

 




  (3) 목표변수 범주/계급 구성 분포(class distribution) 확인 및 처리


세번째로 목표변수(반응변수, 종속변수) diagnosis 의 범주(category, class)의 분포를 살펴보겠습니다. 

table() 함수로 각 계급별 빈도 수 집계, margin.table() 함수로 총 계 계산, prop.table() 함수로 비율을 구하였습니다. 


다행히도 양성(Benign)과 악성(Malignant) 비율이 62.7% vs. 37.2% 로서, 어느 한쪽으로 심하게 불균형이 아니고 양쪽으로 적정하게 배분이 되어 있네요. (데이터를 공개한 교수님들이 참 친절하십니다!)



> # check Y: diagnosis

> # The diagnosis of breast tissues (M = malignant, B = benign)

> table(diagnosis); cat("total :", margin.table(table(diagnosis)))

diagnosis

  B   M 

357 212 

total : 569

> prop.table(table(diagnosis)) # Benign 62.7% vs. Malignant 37.2%

diagnosis

        B         M 

0.6274165 0.3725835

 


만약, 우리가 관심있는 악성(M)의 비율이 1% 미만인 심하게 불균형한 자료(imbalanced dataset)인 경우에는 관측치 빈도수가 클 경우 majority undersampling (정보 손실의 단점 있음)을 하거나, 아니면 SMOTE(Synthetic Minority Over-Sampling TEchnique) 알고리즘을 사용하여 minority oversampling 을 하거나, 혹은 모델 알고리즘에서 가중치를 목표변수 계급의 구성비를 기준으로 조정하는 방법을 사용하면 됩니다. 




  (4) 설명변수 간 다중공선성(Multicollinearity) 확인 및 처리


네번째로, 설명변수 간 강한 상관관계가 있는 다중공선성(Multicolleniarity)이 존재하는지를 


 - 산점도 (Scatter plot)

 - 상관계수 (Correlation Coefficient)

 - 분산팽창지수 (VIF: Variance Inflation Factor)


를 사용하여 확인해보겠습니다. 회귀모형에서는 설명변수간 독립성(independence)을 가정하므로, 독립성 가정 만족 여부를 만족하지 않을 경우 조치하기 위함입니다. 


PerformanceAnalytics 패키지의 chart.Correlation() 함수를 사용하면 한꺼번에 편리하게 각 변수의 히스토그램, 변수들 간의 산점도와 상관계수를 그려볼 수 있습니다. 


코딩하기에 편하도록 설명변수만 따로 떼어서 X 라는 데이터프레임을 만들었습니다. 그리고 설명변수가 30개씩이나 되어 한꺼번에 그래프를 그릴 경우 그래프 결과나 너무나 작고 조밀하게 나와서 보기에 불편하므로, 편의상 'mean' 측정 10개 변수, 'se(standard error' 측정 10개 변수, 'worst' 측정 10개 변수의 3개 그룹으로 나누어서 그래프를 그려보았습니다. (변수 간 상관성이 높게 나온 결과가 3개 그룹간 유사합니다). 


분석 결과 매우 높은 상관관계(상관계수 0.9 이상)를 보이는 설명변수들이 여러개 존재하므로, 다중공선성을 강하게 의심할 수 있습니다. 



> # split Y, X

> Y <- ifelse(wdbc$diagnosis == 'M', 1, 0)

> X <- wdbc[,c(3:32)]

> names(X)

 [1] "radius_mean"             "texture_mean"            "perimeter_mean"         

 [4] "area_mean"               "smoothness_mean"         "compactness_mean"       

 [7] "concavity_mean"          "concave.points_mean"     "symmetry_mean"          

[10] "fractal_dimension_mean"  "radius_se"               "texture_se"             

[13] "perimeter_se"            "area_se"                 "smoothness_se"          

[16] "compactness_se"          "concavity_se"            "concave.points_se"      

[19] "symmetry_se"             "fractal_dimension_se"    "radius_worst"           

[22] "texture_worst"           "perimeter_worst"         "area_worst"             

[25] "smoothness_worst"        "compactness_worst"       "concavity_worst"        

[28] "concave.points_worst"    "symmetry_worst"          "fractal_dimension_worst"

 

> # distribution and correlation check among input variables of WDBC

> install.packages("PerformanceAnalytics")

> library(PerformanceAnalytics)


> chart.Correlation(X[,c(1:10)], histogram=TRUE, col="grey10", pch=1) # MEAN




> chart.Correlation(X[,c(11:20)], histogram=TRUE, col="grey10", pch=1) # SE




> chart.Correlation(X[,c(21:30)], histogram=TRUE, col="grey10", pch=1) # WORST




GGally 패키지의 ggcorr() 함수를 사용하여 30개의 모든 설명변수간 상관계수를 구하고, -1~1의 상관계수에 따라 색을 달리하는 히트맵(heatmap)을 그려보았습니다.  역시나 여러개의 설명변수들이 서로 상관계수 0.9이상의 매우 강한 상관관계를 가지고 있음을 확인할 수 있습니다. 


> # heatmap plot of correlation coefficients of WDBC

> install.packages("GGally")

> library(GGally)

> ggcorr(X, name="corr", label=T)

 



설명변수들 간에 강한 상관성을 가지는 다중공선성(Multicolleniarity)가 존재하면 추정한 회귀계수의 분산이 매우 커지게 되어 추정한 회귀계수를 신뢰하기 힘들게 됩니다. 다시 말하면, 다중공선성이 있는 변수들을 사용해서 회귀계수를 추정하면, 원래 유의미하게 나와야 할 회귀계수가 검정을 해보면 유의미하지 않게 나올 수도 있으며, 반대로 유의미하지 않은 설명변수가 회귀계수 검정 결과 유의미하게 나오는 경우도 유발할 수 있습니다. 


게다가 설명변수들간 강한 상관관계가 존재할 경우 해석하는데도 문제가 생길 수 있습니다. 회귀모형의 경우 다른 설명변수를 고정(fix, control)한 상태에서 해당 설명변수가 한 단위 증가할 때 회귀계수 만큼 종속변수(목표변수)가 변화한다고 해석을 하는데요, 만약 다중공선성이 존재한다면 '다른 설명변수를 고정한다'는 설명변수의 독립성 가정이 안맞기 때문에 해석이 곤란해집니다. 따라서 다중공선성이 의심되면 처리를 해주는게 필요합니다. 


일반적으로 k개의 설명변수별 분산팽창지수(VIF: Variance Inflation Factor)를 구했을 때 가장 큰 VIF 값이 5 이상이면 다중공선성이 있다고 보며, VIF 값이 10 이상이며 다중공선성이 매우 심각하다고 평가합니다. 





다중공선성이 확인되면 이를 해결하기 위한 방법으로 


(1) 상관계수가 가장 높은 변수를 제거(remove the highly correlated Xj variable, VIF 10 이상인 설명변수들 중에서 가장 큰 VIF 변수 제거 -> 나머지 모든 변수에 대해 VIF 계산 -> VIF 10 이상인 설명변수들 중에서 가장 큰 VIF 변수 제거 -> 나머지 변수들 VIF 계산 -> 제거 .... 의 과정을 반복함), 


(2) 주성분분석(PCA), 요인분석(factor analysis), VAE(Variable Auto Encoder) 등의 알고리즘을 이용한 차원 축소 (dimension reduction), 


(3) 모수 추정 시 최소자승법(Least Squares Method) 대신에 Regularization (penalty)를 부여하는 Ridge regression, LASSO, PLS(Partial Least Squares Regression) 등을 사용하는 방법이 있습니다. 



지난번 포스팅에서 분석 방향 설정 부분에서 의사 선생님들이 진단하는데 사용하는 모델인 만큼 '모델 해석력(interpretability)'이 매우 중요할 것으로 예상이 된다고 했으므로, 이번 포스팅에서는 (1) 분산팽창지수(VIF) 10 이상인 설명변수를 제거하는 방법을 사용하겠습니다. 


R의 fmsb 패키지의 VIF() 함수를 사용해서 모든 설명변수의 분산팽창지수를 구한 후에 가장 큰 값이 10 이상이 경우 순차적으로 제거하겠습니다. 먼저, 예시로 첫번째와 두번째 설명변수인 radius_mean, texture_mean에 대한 분산팽창지수를 계산해본 것인데요, radius_mean 변수의 VIF가 3,806으로서 미친듯이 높음을 알 수 있습니다. (나머지 29의 설명변수와 매우 강한 선형상관관계를 가지고 있다는 뜻)



> # multicolleniarity check

> install.packages("fmsb")

> library(fmsb)

> VIF(lm(radius_mean ~ .,data=X))

[1] 3806.115

> VIF(lm(texture_mean ~ .,data=X))

[1] 11.88405

 



문제는 설명변수가 30개씩이나 되고, 30개 변수의 VIF를 모두 구해서 제일 큰 VIF 값의 설명변수를 제거하고, 다시 29개의 설명변수의 VIF를 모두 구해서 제일 큰 VIF 값의 설명변수를 제거하고.... 이런 단순 반복작업을 VIF 값이 10 이상인 설명변수가 없을 때 까지 반복해야만 한다는 점입니다. 


이처럼 반복작업인 경우 사용자 정의 함수(User Defined Function)을 짜놓고 사용하면 편리하고 시간도 줄일 수 있어서 좋습니다. 



[분산팽창지수를 구하고 VIF 10 이상인 변수 중 가장 큰 값을 순차적으로 제거하는 R 사용자 정의함수]

 

# Multi-collinearity check and remove the highly correlated variables step by step

# UDF of stepwise VIF function with preallocated vectors

# code source: https://beckmw.wordpress.com/2013/02/05/collinearity-and-stepwise-vif-selection/


vif_func <- function(in_frame,thresh=10, trace=F,...){

  

  require(fmsb)

  

  if(class(in_frame) != 'data.frame') in_frame<-data.frame(in_frame)

  

  #get initial vif value for all comparisons of variables

  vif_init <- vector('list', length = ncol(in_frame))

  names(vif_init) <- names(in_frame)

  var_names <- names(in_frame)

  

  for(val in var_names){

    regressors <- var_names[-which(var_names == val)]

    form <- paste(regressors, collapse = '+')

    form_in <- formula(paste(val,' ~ .'))

    vif_init[[val]] <- VIF(lm(form_in,data=in_frame,...))

  }

  vif_max<-max(unlist(vif_init))

  

  if(vif_max < thresh){

    if(trace==T){ #print output of each iteration

      prmatrix(vif_init,collab=c('var','vif'),rowlab=rep('', times = nrow(vif_init) ),quote=F)

      cat('\n')

      cat(paste('All variables have VIF < ', thresh,', max VIF ',round(vif_max,2), sep=''),'\n\n')

    }

    return(names(in_frame))

  }

  else{

    

    in_dat<-in_frame

    

    #backwards selection of explanatory variables, stops when all VIF values are below 'thresh'

    while(vif_max >= thresh){

      

      vif_vals <- vector('list', length = ncol(in_dat))

      names(vif_vals) <- names(in_dat)

      var_names <- names(in_dat)

      

      for(val in var_names){

        regressors <- var_names[-which(var_names == val)]

        form <- paste(regressors, collapse = '+')

        form_in <- formula(paste(val,' ~ .'))

        vif_add <- VIF(lm(form_in,data=in_dat,...))

        vif_vals[[val]] <- vif_add

      }

      

      max_row <- which.max(vif_vals)

      #max_row <- which( as.vector(vif_vals) == max(as.vector(vif_vals)) )

      

      vif_max<-vif_vals[max_row]

      

      if(vif_max<thresh) break

      

      if(trace==T){ #print output of each iteration

        vif_vals <- do.call('rbind', vif_vals)

        vif_vals

        prmatrix(vif_vals,collab='vif',rowlab=row.names(vif_vals),quote=F)

        cat('\n')

        cat('removed: ', names(vif_max),unlist(vif_max),'\n\n')

        flush.console()

      }

      in_dat<-in_dat[,!names(in_dat) %in% names(vif_max)]

    }

    return(names(in_dat))

  }

}





== 참고로 Python으로 다중공선성 처리하는 사용자 정의 함수는 아래 참고하세요. ==



# Remove multicollinarity recursively using Python

from statsmodels.stats.outliers_influence import variance_inflation_factor


def X_filter_multicollinearity(X, thresh=5.0):

    from datetime import datetime

    start_tm = datetime.now()

    

    variables = list(range(X.shape[1]))

    dropped = True

    while dropped:

        dropped = False

        vif = [variance_inflation_factor(X.iloc[:, variables].values, ix) 

               for ix in range(X.iloc[:, variables].shape[1])]

        

        maxloc = vif.index(max(vif))

        

        if max(vif) > thresh:

            print('==> [Dropped variable] : ' + X.iloc[:, variables].columns[maxloc])

            del variables[maxloc]

            

            if len(variables) > 1:

                dropped = True


    print('[Remaining variables] :')

    print(X.columns[variables])

    print('[Elapsed time] :', str(datetime.now() - start_tm))

    

    return variables


# run the UDF

X_remained_idx = X_filter_multicollinearity(X)

print('X index after filtering multicollinearity:', X_remained_idx)

 




위의 사용자정의함수 vif_func() 를 먼저 실행시키고, 다음으로 아래처럼 설명변수 X DataFrame과 VIF 기준(threshold)을 10으로 설정하고, 순차적인 제거(remove) 결과를 프린트하도록 해서 vif_func(X, thresh=10, trace=T) 함수를 실행시키면 아래와 같습니다. 



> # run vif_function

> X_independent <- vif_func(X, thresh=10, trace=T)

                                vif

radius_mean             3806.115296

texture_mean              11.884048

perimeter_mean          3786.400419

area_mean                347.878657

smoothness_mean            8.194282

compactness_mean          50.505168

concavity_mean            70.767720

concave.points_mean       60.041733

symmetry_mean              4.220656

fractal_dimension_mean    15.756977

radius_se                 75.462027

texture_se                 4.205423

perimeter_se              70.359695

area_se                   41.163091

smoothness_se              4.027923

compactness_se            15.366324

concavity_se              15.694833

concave.points_se         11.520796

symmetry_se                5.175426

fractal_dimension_se       9.717987

radius_worst             799.105946

texture_worst             18.569966

perimeter_worst          405.023336

area_worst               337.221924

smoothness_worst          10.923061

compactness_worst         36.982755

concavity_worst           31.970723

concave.points_worst      36.763714

symmetry_worst             9.520570

fractal_dimension_worst   18.861533


removed:  radius_mean 3806.115 


                               vif

texture_mean             11.882933

perimeter_mean          541.712931

area_mean               317.093211

smoothness_mean           7.990641

compactness_mean         38.106611

concavity_mean           65.978202

concave.points_mean      60.025840

symmetry_mean             4.203501

fractal_dimension_mean   15.677673

radius_se                75.101495

texture_se                4.185513

perimeter_se             67.720819

area_se                  41.089343

smoothness_se             4.017499

compactness_se           15.341790

concavity_se             15.234133

concave.points_se        11.399633

symmetry_se               5.175369

fractal_dimension_se      9.699518

radius_worst            616.350861

texture_worst            18.539292

perimeter_worst         375.408537

area_worst              304.471896

smoothness_worst         10.727206

compactness_worst        36.053404

concavity_worst          31.968539

concave.points_worst     36.763168

symmetry_worst            9.511243

fractal_dimension_worst  18.841897


removed:  radius_worst 616.3509 


                               vif

texture_mean             11.759131

perimeter_mean          325.641312

area_mean               237.012095

smoothness_mean           7.988003

compactness_mean         36.681620

concavity_mean           64.836935

concave.points_mean      60.019062

symmetry_mean             4.123603

fractal_dimension_mean   15.670406

radius_se                38.637579

texture_se                4.132025

perimeter_se             59.062677

area_se                  33.911923

smoothness_se             4.010296

compactness_se           15.304014

concavity_se             15.002055

concave.points_se        11.218541

symmetry_se               5.156085

fractal_dimension_se      9.542616

texture_worst            18.191599

perimeter_worst         308.052048

area_worst              168.343121

smoothness_worst         10.679641

compactness_worst        35.779767

concavity_worst          31.942417

concave.points_worst     35.761242

symmetry_worst            9.312564

fractal_dimension_worst  18.445566


removed:  perimeter_mean 325.6413 


                               vif

texture_mean             11.714252

area_mean                34.491349

smoothness_mean           7.964156

compactness_mean         31.979571

concavity_mean           64.655174

concave.points_mean      59.967015

symmetry_mean             4.123603

fractal_dimension_mean   14.921612

radius_se                36.056151

texture_se                4.092556

perimeter_se             42.980382

area_se                  32.570748

smoothness_se             3.914161

compactness_se           15.283194

concavity_se             14.769198

concave.points_se        10.464462

symmetry_se               5.128175

fractal_dimension_se      9.542575

texture_worst            18.112512

perimeter_worst         123.257811

area_worst               72.764912

smoothness_worst         10.648133

compactness_worst        34.263137

concavity_worst          31.681663

concave.points_worst     35.231031

symmetry_worst            9.268771

fractal_dimension_worst  18.287262


removed:  perimeter_worst 123.2578 


                              vif

texture_mean            11.679833

area_mean               28.534200

smoothness_mean          7.909212

compactness_mean        28.746302

concavity_mean          64.654796

concave.points_mean     59.816820

symmetry_mean            4.071436

fractal_dimension_mean  12.724264

radius_se               36.045576

texture_se               4.040107

perimeter_se            31.225949

area_se                 20.995394

smoothness_se            3.894739

compactness_se          15.199363

concavity_se            14.766025

concave.points_se       10.344938

symmetry_se              5.007681

fractal_dimension_se     9.302515

texture_worst           18.004692

area_worst              23.311066

smoothness_worst        10.619439

compactness_worst       34.253186

concavity_worst         31.669493

concave.points_worst    34.141124

symmetry_worst           9.077526

fractal_dimension_worst 18.285365


removed:  concavity_mean 64.6548 


                              vif

texture_mean            11.679763

area_mean               28.512892

smoothness_mean          7.543056

compactness_mean        26.110203

concave.points_mean     28.499831

symmetry_mean            4.064239

fractal_dimension_mean  12.668596

radius_se               35.617518

texture_se               4.034866

perimeter_se            31.178650

area_se                 19.985188

smoothness_se            3.872144

compactness_se          14.858964

concavity_se            11.587995

concave.points_se       10.013827

symmetry_se              5.005381

fractal_dimension_se     9.248401

texture_worst           18.003124

area_worst              23.026283

smoothness_worst        10.598388

compactness_worst       33.972256

concavity_worst         21.188494

concave.points_worst    32.115706

symmetry_worst           9.068073

fractal_dimension_worst 18.090939


removed:  radius_se 35.61752 


                              vif

texture_mean            11.465264

area_mean               25.427695

smoothness_mean          7.482881

compactness_mean        26.043226

concave.points_mean     27.801240

symmetry_mean            4.047744

fractal_dimension_mean  12.232750

texture_se               4.011486

perimeter_se            16.007813

area_se                 16.951023

smoothness_se            3.861783

compactness_se          14.577396

concavity_se            11.499061

concave.points_se        9.999462

symmetry_se              5.003384

fractal_dimension_se     8.800984

texture_worst           17.724662

area_worst              20.617761

smoothness_worst        10.595373

compactness_worst       33.960639

concavity_worst         21.056095

concave.points_worst    32.088040

symmetry_worst           9.065905

fractal_dimension_worst 18.084650


removed:  compactness_worst 33.96064 


                              vif

texture_mean            11.448852

area_mean               25.389376

smoothness_mean          7.479515

compactness_mean        19.208231

concave.points_mean     25.697888

symmetry_mean            3.982308

fractal_dimension_mean  10.961595

texture_se               3.998307

perimeter_se            15.960835

area_se                 16.935889

smoothness_se            3.859669

compactness_se           9.974677

concavity_se            10.850219

concave.points_se        9.805676

symmetry_se              4.941233

fractal_dimension_se     7.983689

texture_worst           17.701635

area_worst              20.613295

smoothness_worst        10.586935

concavity_worst         18.432076

concave.points_worst    30.596655

symmetry_worst           8.754474

fractal_dimension_worst 13.187594


removed:  concave.points_worst 30.59666 


                              vif

texture_mean            11.278555

area_mean               25.387830

smoothness_mean          7.162886

compactness_mean        19.175385

concave.points_mean     19.091402

symmetry_mean            3.918815

fractal_dimension_mean  10.902634

texture_se               3.937299

perimeter_se            15.808730

area_se                 16.917891

smoothness_se            3.637606

compactness_se           9.956527

concavity_se             9.775933

concave.points_se        5.347299

symmetry_se              4.900803

fractal_dimension_se     7.965699

texture_worst           17.427935

area_worst              20.406468

smoothness_worst         9.741783

concavity_worst         16.192763

symmetry_worst           8.435382

fractal_dimension_worst 13.047801


removed:  area_mean 25.38783 


                              vif

texture_mean            11.179202

smoothness_mean          7.162712

compactness_mean        18.843208

concave.points_mean     15.619381

symmetry_mean            3.895936

fractal_dimension_mean   9.707446

texture_se               3.937174

perimeter_se            15.619268

area_se                 16.655447

smoothness_se            3.632008

compactness_se           9.936443

concavity_se             9.705569

concave.points_se        5.250584

symmetry_se              4.872228

fractal_dimension_se     7.946733

texture_worst           17.236427

area_worst              10.626847

smoothness_worst         9.608528

concavity_worst         16.109962

symmetry_worst           8.409532

fractal_dimension_worst 13.023306


removed:  compactness_mean 18.84321 


                              vif

texture_mean            11.134313

smoothness_mean          6.970849

concave.points_mean     11.753066

symmetry_mean            3.829642

fractal_dimension_mean   7.907186

texture_se               3.890957

perimeter_se            15.333308

area_se                 16.345495

smoothness_se            3.552541

compactness_se           6.363339

concavity_se             9.367267

concave.points_se        5.245367

symmetry_se              4.871870

fractal_dimension_se     7.584276

texture_worst           17.232376

area_worst              10.602010

smoothness_worst         9.606389

concavity_worst         15.700019

symmetry_worst           8.401090

fractal_dimension_worst 13.023120


removed:  texture_worst 17.23238 


                              vif

texture_mean             1.715846

smoothness_mean          6.795612

concave.points_mean     11.715292

symmetry_mean            3.654734

fractal_dimension_mean   7.890069

texture_se               2.033874

perimeter_se            15.281161

area_se                 16.333806

smoothness_se            3.384881

compactness_se           6.337432

concavity_se             9.364521

concave.points_se        5.235966

symmetry_se              4.312472

fractal_dimension_se     7.575192

area_worst              10.540176

smoothness_worst         8.644833

concavity_worst         15.699140

symmetry_worst           7.294569

fractal_dimension_worst 13.021119


removed:  area_se 16.33381 


                              vif

texture_mean             1.709993

smoothness_mean          6.701262

concave.points_mean     11.653729

symmetry_mean            3.651771

fractal_dimension_mean   7.750052

texture_se               2.009042

perimeter_se             4.317808

smoothness_se            3.338723

compactness_se           6.317986

concavity_se             8.849322

concave.points_se        4.645375

symmetry_se              4.312339

fractal_dimension_se     7.575158

area_worst               8.677078

smoothness_worst         8.642994

concavity_worst         15.510661

symmetry_worst           7.265658

fractal_dimension_worst 12.938791


removed:  concavity_worst 15.51066 


> X_independent

 [1] "texture_mean"            "smoothness_mean"         "concave.points_mean"    

 [4] "symmetry_mean"           "fractal_dimension_mean"  "texture_se"             

 [7] "perimeter_se"            "smoothness_se"           "compactness_se"         

[10] "concavity_se"            "concave.points_se"       "symmetry_se"            

[13] "fractal_dimension_se"    "area_worst"              "smoothness_worst"       

[16] "symmetry_worst"          "fractal_dimension_worst"

 



이렇게 VIF 10 이상인 설명변수를 순차적으로 제거해서 처음에 30개의 설명변수가 -> 17개의 설명변수로 줄어들었습니다. 




남은 17개 설명변수만을 가진 X_2 데이터프레임을 만들고, 상관계수 히트맵을 다시 그려보았습니다. 일부 변수가 상관계수 0.8인 경우가 있기는 합니다만, 0.9이상의 매우 강한 상관관계를 가진 설명변수는 없네요.  



> # explanatory/independant variables after VIF test

> X_2 <- X[, X_independent]

> str(X_2)

'data.frame': 569 obs. of  17 variables:

 $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...

 $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...

 $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...

 $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...

 $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...

 $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...

 $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...

 $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...

 $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...

 $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...

 $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...

 $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...

 $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...

 $ area_worst             : num  2019 1956 1709 568 1575 ...

 $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...

 $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...

 $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...

> # correlation heatmap plot again

> ggcorr(X_2, name="corr", label=T)



 




  (5) 설명변수 표준화, 척도 변환 (standardization, rescal)


지난번 첫번째 포스팅에서 데이터셋 설명할 때 설명변수들간의 측정 척도(scale)이 서로 다르다고 했는데요, 나중에 그래프 그려서 비교하기에 유용하도록 척도를 평균이 '0', 표준편차가 '1'인 새로운 척도로 표준화(standardization) 하도록 하겠습니다.  




scale() 함수를 이용하면 간단하게 표준화를 할 수 있습니다. summary() 함수로 확인해보니 평균이 '0'으로 중심이 바뀌었으며, max 값이 들쭉 날쭉 한걸로 봐서는 변수별로 outlier들이 꽤 있는 것처럼 보이네요. 로지스틱 회귀모형을 적합할 계획이므로 별도로 이상치(outlier) 처리는 다루지 않겠습니다. 



> # Standardization

> X_3 <- scale(X_2)

> summary(X_3)

  texture_mean     smoothness_mean    concave.points_mean symmetry_mean      fractal_dimension_mean

 Min.   :-2.2273   Min.   :-3.10935   Min.   :-1.2607     Min.   :-2.74171   Min.   :-1.8183       

 1st Qu.:-0.7253   1st Qu.:-0.71034   1st Qu.:-0.7373     1st Qu.:-0.70262   1st Qu.:-0.7220       

 Median :-0.1045   Median :-0.03486   Median :-0.3974     Median :-0.07156   Median :-0.1781       

 Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000     Mean   : 0.00000   Mean   : 0.0000       

 3rd Qu.: 0.5837   3rd Qu.: 0.63564   3rd Qu.: 0.6464     3rd Qu.: 0.53031   3rd Qu.: 0.4706       

 Max.   : 4.6478   Max.   : 4.76672   Max.   : 3.9245     Max.   : 4.48081   Max.   : 4.9066       

   texture_se       perimeter_se     smoothness_se     compactness_se     concavity_se    

 Min.   :-1.5529   Min.   :-1.0431   Min.   :-1.7745   Min.   :-1.2970   Min.   :-1.0566  

 1st Qu.:-0.6942   1st Qu.:-0.6232   1st Qu.:-0.6235   1st Qu.:-0.6923   1st Qu.:-0.5567  

 Median :-0.1973   Median :-0.2864   Median :-0.2201   Median :-0.2808   Median :-0.1989  

 Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  

 3rd Qu.: 0.4661   3rd Qu.: 0.2428   3rd Qu.: 0.3680   3rd Qu.: 0.3893   3rd Qu.: 0.3365  

 Max.   : 6.6494   Max.   : 9.4537   Max.   : 8.0229   Max.   : 6.1381   Max.   :12.0621  

 concave.points_se  symmetry_se      fractal_dimension_se   area_worst      smoothness_worst 

 Min.   :-1.9118   Min.   :-1.5315   Min.   :-1.0960      Min.   :-1.2213   Min.   :-2.6803  

 1st Qu.:-0.6739   1st Qu.:-0.6511   1st Qu.:-0.5846      1st Qu.:-0.6416   1st Qu.:-0.6906  

 Median :-0.1404   Median :-0.2192   Median :-0.2297      Median :-0.3409   Median :-0.0468  

 Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000      Mean   : 0.0000   Mean   : 0.0000  

 3rd Qu.: 0.4722   3rd Qu.: 0.3554   3rd Qu.: 0.2884      3rd Qu.: 0.3573   3rd Qu.: 0.5970  

 Max.   : 6.6438   Max.   : 7.0657   Max.   : 9.8429      Max.   : 5.9250   Max.   : 3.9519  

 symmetry_worst    fractal_dimension_worst

 Min.   :-2.1591   Min.   :-1.6004        

 1st Qu.:-0.6413   1st Qu.:-0.6913        

 Median :-0.1273   Median :-0.2163        

 Mean   : 0.0000   Mean   : 0.0000        

 3rd Qu.: 0.4497   3rd Qu.: 0.4504        

 Max.   : 6.0407   Max.   : 6.8408

 



이상으로 탐색적 데이터 분석 및 데이터 전처리 포스팅을 마치겠습니다. 

다음번 포스팅에서는 세번째로 '1차 변수 선택 및 목표변수와 설명변수 간 관계 분석'에 대해서 다루어보겠습니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾸욱 눌러주세요. ^^



728x90
반응형
Posted by Rfriend
,