데이터 변환 방법으로서

(1) 표준화

(2) 정규분포화

(3) 범주화

  - (3-1) 이산형화(discretization)

  - (3-2) 이항변수화(binarization)

(4) 개수 축소

(5) 차원 축소

  - 주성분분석

  - 요인분석 

(6) 시그널 데이터 압축

 

중에서 우선 (3-1) 이산형화(discretization)에 대해서 알아보겠습니다. 

 

판별분석, 의사결정나무, 연관분석과 같은 분석 기법에서는 설명변수가 범주형 변수이어야지만 분석이 가능합니다.  분할표(contingency table)를 구하거나 카이제곱 검정을 할 때 범주형 변수를 대상으로 집단 간 독립성 검정을 하게 됩니다.  이처럼 분석기법에 따라서 연속형 변수를 범주형 변수로 변환을 한 이후에야 분석이 가능한 경우가 있습니다. 

 

혹은, 회귀분석을 한다고 했을 때 명목형, 범주형 자료에 대해서 가변수(dummy variable) 화 해서 분석을 진행해야 할 때도 있습니다.  가령 요일효과를 모형에 적합시키고자 한다면 요일 변수를 월요일 여부(mon_yn), 화요일 여부(tue_yn), ... , 토요일 여부(sat_yn) 등과 같이 1, 0 으로 코드화된 가변수로 변환해야 하는 경우도 있습니다.

 

이번 포스팅에서는 첫번째 경우의 (1) 이산형화, 두번째 경우의 (2) 이항변수화에 대해서 R에서는 어떻게 처리하는지 알아보도록 하겠습니다.

 

 

 R 데이터 변환 (3) 범주화 : 이산형화(discretization)

 

 

[ 데이터 변환 구성 ] 

 

 

 

 

(3-1) 이산형화 (Discretization)

 

연속형 변수를 범주형 변수로 변환하는 작업을 이산형화라고 합니다.  이산형화 변화 시에는 '몇 개의 범주로 나눌지?''구분선(cutting line)을 무슨 기준으로, 어디로 할지?'가 중요한 질문이 되겠습니다.

 

두 질문에 대한 학술적인 단 하나의 답안은 없습니다.  두 질문에 대해 공통적으로 분석/활용의 목적이 무엇이냐와 Biz. Domain Konwledge가 충분히 반영이 되어서 의사결정을 해야만 하고, 운영 과정상의 시행착오와 경험을 통한 긍정/부정적 피드백을 반영하여 지속적으로 개선해나가야 할 것입니다. 

 

이번 포스팅에서는 (a) 간격을 동일하게 한 범주화와 (b) quantile을 활용한 범주화 (c) frequency를 동일하게 한 범주화를 R로 어떻게 하는지Cars93 데이터셋의 고속도로 연비(MPG.highway)을 가지고 예를 들어보겠습니다.

 

(참고로, Cars93 은 MASS 패키지에 내장된 데이터 셋으로서, 자동차의 속성에 대해서 27개의 변수, 93개 자동차 관측치를 가진 데이터 프레임)

 

(a) 간격을 동일하게 한 범주화는 R의 hist() 함수로 히스토그램을 그려보는 것이 좋은 출발점이 될 수 있습니다. R의 hist() 함수의 디폴트 구간 개수가 꽤 좋은 결과를 내주거든요.  bin size를 조정해가면서 분포를 탐색해보고서 특정 구간에서 변곡점이 있다면, 혹은 특정 segment 나 factor 별로 분포상의 큰 차이를 보인다면 그 구분선을 가지고 범주를 나눌 수도 있을 것입니다.

 

R의 within() 함수를 활용하여 아래의 Cars93의 고속도로연비는 20~50까지 5단위씩 등간격으로 6개 범주로 나누어 보겠습니다. 

 

> library(MASS)
> str(Cars93)
'data.frame':	93 obs. of  27 variables:
 $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
 $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
 $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
 $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
 $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
 $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
 $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
 $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
 $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
 $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
 $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
 $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
 $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
 $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
 $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
 $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
 $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
 $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
 $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
 $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
 $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
 $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
 $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
 $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
 $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
 $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
 $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ..
 

> ## 고속도로연비(MPG.highway) 히스토그램

> hist(Cars93$MPG.highway)
 

 

 

> ## Model, MPG.highway 두 개 변수만 선택해서 disc_1 데이터 프레임 생성

> disc_1 <- Cars93[,c("Model", "MPG.highway")]

> ## 상위 6개 미리보기

> head(disc_1) Model MPG.highway 1 Integra 31 2 Legend 25

3 90 26 4 100 26

5 535i 30 6 Century 31

>

>

> ## 6개 범주로 등간격 범주화

 

 

> disc_1 <- within( disc_1, { + MPG.highway_cd = character(0) + MPG.highway_cd[ MPG.highway >=20 & MPG.highway <25 ] = "20~25" + MPG.highway_cd[ MPG.highway >=25 & MPG.highway <30 ] = "25~30" + MPG.highway_cd[ MPG.highway >=30 & MPG.highway <35 ] = "30~35" + MPG.highway_cd[ MPG.highway >=35 & MPG.highway <40 ] = "35~40" + MPG.highway_cd[ MPG.highway >=40 & MPG.highway <45 ] = "40~45" + MPG.highway_cd[ MPG.highway >=45 & MPG.highway <=50 ] = "45~50" + MPG.highway_cd = factor(MPG.highway_cd, + level = c("20~25", "25~30", "30~35", + "35~40", "40~45", "45~50")) + })

> 

> ## 상위 6개 보기

> head(disc_1)
    Model MPG.highway MPG.highway_cd
1 Integra          31          30~35
2  Legend          25          25~30
3      90          26          25~30
4     100          26          25~30
5    535i          30          30~35
6 Century          31          30~35
 

 

 

> attributes(disc_1$MPG.highway_cd)
$levels
[1] "20~25" "25~30" "30~35" "35~40" "40~45" "45~50"

$class
[1] "factor"

 

 

> table(disc_1$MPG.highway_cd) # 분할표 생성

 

20~25 25~30 30~35 35~40 40~45 45~50 14 41 27 7 2 2

 

"MPG.highway" 변수 옆에 "MPG.highway_cd" 라는 범주형 변수가 생겼음을 알 수 있습니다.  나중에 통계분석과 연계하기 위해 "MPG.highway_cd" 변수를 within()함수의 제일 마지막 줄에서 요인(factor)으로 지정을 해줬고, level = c("20~25", "25~30", "30~35", "35~40", "40~45", "45~50")) 으로 순서형 요인(ordered factor)의 수준을 지정해주었습니다.

 

 

다음으로 (b) quantile을 활용한 범주화 방법에 대해서 알아보겠습니다.  MPG.highway를 0~25%, 25~50%, 50~75%, 75~100%의 구성비로 해서 4개 범주로 나누어보겠습니다.

 

> summary(disc_1$MPG.highway)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  20.00   26.00   28.00   29.09   31.00   50.00
> 

> # 4분위수의 1Q, 2Q, 3Q, 4Q를 기준으로 4개의 범주 생성

> disc_1 <- within( disc_1, {
+   MPG.highway_cd2 = character(0)
+   MPG.highway_cd2[ MPG.highway <  quantile(MPG.highway, 0.25) ] = "1Q"
+   MPG.highway_cd2[ MPG.highway >= quantile(MPG.highway, 0.25) 
+                    & MPG.highway < quantile(MPG.highway, 0.50) ] = "2Q"
+   MPG.highway_cd2[ MPG.highway >=quantile(MPG.highway, 0.50) 
+                    & MPG.highway < quantile(MPG.highway, 0.75) ] = "3Q"
+   MPG.highway_cd2[ MPG.highway >= quantile(MPG.highway, 0.75) ] = "4Q"
+   MPG.highway_cd2 = factor(MPG.highway_cd2, 
+                           level = c("1Q", "2Q", "3Q", "4Q"))
+ })
> 

> # 상위 6개 보기

> head(disc_1)
    Model MPG.highway MPG.highway_cd MPG.highway_cd2
1 Integra          31          30~35              4Q
2  Legend          25          25~30              1Q
3      90          26          25~30              2Q
4     100          26          25~30              2Q
5    535i          30          30~35              3Q
6 Century          31          30~35              4Q
 

 

 

> table(disc_1$MPG.highway_cd2)  # 분할표 생성

1Q 2Q 3Q 4Q 
22 17 25 29 

 

 

다음으로, (c) frequency를 동일하게 해서 4개 범주를 구성해보도록 하겠습니다.  먼저 고속도로연비(MPG.highway) 기준으로 정렬을 해줘야합니다.

 

> ## 고속도로연비(MPG.highway) 기준으로 오름차순 정렬

> disc_1 <- disc_1[order(disc_1$MPG.highway), ]

 

 

> dim(disc_1) # 93개 관측치, 4개 변수 [1] 93 4

 

## 관측치 개수

> dim(disc_1)[1]
[1] 93
> 

> disc_1$N <- seq(1:length(disc_1$MPG.highway)) # 1~93까지 순서대로 1씩 증가하는 N이라는 변수 생성

>

> # 동일 frequency (23개)로 4개 범주 생성

> disc_1 <- within( disc_1, { + MPG.highway_cd3 = character(0) + MPG.highway_cd3[ N <= 23 ] = "1st_Freq" + MPG.highway_cd3[ N >= 24 & N <= 46 ] = "2nd_Freq" + MPG.highway_cd3[ N >= 47 & N <= 69 ] = "3rd_Freq" + MPG.highway_cd3[ N >= 70 ] = "4th_Freq" + MPG.highway_cd3 = factor(MPG.highway_cd3, + level = c("1st_Freq", "2nd_Freq", "3rd_Freq", "4th_Freq")) + }) > > head(disc_1) Model MPG.highway MPG.highway_cd MPG.highway_cd2 N MPG.highway_cd3 17 Astro 20 20~25 1Q 1 1st_Freq 36 Aerostar 20 20~25 1Q 2 1st_Freq 26 Caravan 21 20~25 1Q 3 1st_Freq 89 Eurovan 21 20~25 1Q 4 1st_Freq 48 Q45 22 20~25 1Q 5 1st_Freq 87 Previa 22 20~25 1Q 6 1st_Freq

 

 

 

 

>

 

 

> table(disc_1$MPG.highway_cd3) 1st_Freq 2nd_Freq 3rd_Freq 4th_Freq 23 23 23 24

 

위의 분할표를 보면 4개 범주별로 23개, 23개, 23개, 24개(총 93개여서 마지막에 1개 더 넣음) 로 동일 frequency로 범주화가 되었음을 알 수 있습니다.  그런데 (c) 같은 frequency 로 범주화 시에 동일한 고속도로연비임에도 범주가 다르게 구분이 되는 수가 생깁니다.  아래 예에서 보면 고속도로연비가 28인 경우 "2nd_Freq"와 "3rd_Freq" 범주에 양다리 걸쳐있는것을 확인할 수 있습니다.  ("1st_Freq"와 "2nd_Freq"에도 고속도로연비 26이 양다리를 걸치고 있습니다.  또한 31이 "3rd_Freq"와 "4th_Freq"에 양다리를 걸치고 있습니다.)  이처럼 동일 frequency로 범주화시에는 중첩됨이 없이 범주화하기가 어려운 문제점이 있습니다.  따라서 해석의 용이성과 중첩 방지를 위해서 (a) 등간격 범주화 또는 (b) quantile 활용 범주화가 (c) 동일 freqency보다는 좀더 유용하다고 볼 수 있겠습니다. 

 

 

이항변수화 (binarization)은 다음번 포스팅에서 소개해드리겠습니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요

데이터는 크게 (1) 명목형 또는 순서형의 범주형 데이터 (categorical data)와 (2) 연속형 데이터 (continuous data) 로 구분할 수 있습니다.  R에서는 범주형 데이터를 요인(factor)형 데이터 구조라고 부르고 있으며, 순서(order)가 있는 경우는 순서형 요인(ordered factor)라고 해서 구분하기도 합니다.

 

분석하고자 하는 데이터 셋을 받으면 제일 먼저 데이터 구조와 데이터 형태를 탐색하게 됩니다.  그리고 분석 목적과 시나리오에 따라서 변수를 변환하게 되지요.  이번 포스팅에서는 연속형 변수를 범주형 변수로 변환하는 3가지 방법에 대해서 알아보도록 하겠습니다.  통계기법 중 도수분포표, 교차분할표, 카이제곱 검정이라든지, 로지스틱회귀분석, 그래프 중 막대그림, 원그림, 점그림 등의 경우 범주형 변수로 변환을 해야만 하며, 데이터 탐색 시에도 범주형 변수로 변환하여 분포 형태나 집단 간 비교를 하게 되므로 이번 포스팅은 활용도가 매우 높다고 하겠습니다.

 

cut() 함수, ifelse() 함수, within() 함수를 이용해서 아래 예를 들어 설명하도록 하겠습니다.

 

 

 연속형 변수를 범주형 변수로 변환하기: cut(), ifesle(), within()

 

(1) cut()

 

> ## 통계시험 점수 (stat_score) > student_id <- c("s01", "s02", "s03", "s04", "s05", "s06", "s07", "s08", "s09", "s10") > stat_score <- c(56, 94, 82, 70, 64, 82, 78, 80, 76, 78) > mean(stat_score) [1] 76 > hist(stat_score)

 

 

 

> # 데이터 프레임 생성
> score_d.f <- data.frame(student_id, stat_score)
> score_d.f
   student_id stat_score
1         s01         56
2         s02         94
3         s03         82
4         s04         70
5         s05         64
6         s06         82
7         s07         78
8         s08         80
9         s09         76
10        s10         78
 
> rm(student_id, stat_score)

 

 

위의 통계시험 성적을 가지고 cut() 함수를 이용하여 "수", "우", "미", "양", "가" 등급을 매겨보도록 하겠습니다.

right = TRUE 옵션을 주면 a < x <= b  와 같이 오른쪽 숫자까지 포함하여 해당 등급을 부여하게 됩니다.

right = FALSE 옵션을 주면 a<= x <b 의 조건으로 등급을 부여하며, include.lowest = TRUE 옵션을 주면 구성요소 값이 최소값과 같아도 변환을 시키게 됩니다.

 

> ## (1) cut()
> score_d.f <- transform(score_d.f, 
+                  stat_score_1 = cut(stat_score, breaks = c(0, 60, 70, 80, 90, 100), 
+                                     include.lowest = TRUE, 
+                                     right = FALSE, 
+                                     labels = c("가", "양", "미", "우", "수")
+                                     ), 
+                  stat_score_2 = cut(stat_score, breaks = c(0, 60, 70, 80, 90, 100), 
+                                     include.lowest = FALSE, 
+                                     right = FALSE, 
+                                     labels = c("가", "양", "미", "우", "수")
+                                     ),
+                  stat_score_3 = cut(stat_score, breaks = c(0, 60, 70, 80, 90, 100), 
+                                     include.lowest = FALSE, 
+                                     right = TRUE, 
+                                     labels = c("가", "양", "미", "우", "수")
+                                     ), 
+                  stat_score_4 = cut(stat_score, breaks = c(0, 60, 70, 80, 90, 100), 
+                                     include.lowest = TRUE, 
+                                     right = TRUE, 
+                                     labels = c("가", "양", "미", "우", "수")
+                                     )
+                        )
> 
> score_d.f
   student_id stat_score stat_score_1 stat_score_2 stat_score_3 stat_score_4
1         s01         56           가           가           가           가
2         s02         94           수           수           수           수
3         s03         82           우           우           우           우
4         s04         70           미           미           양           양
5         s05         64           양           양           양           양
6         s06         82           우           우           우           우
7         s07         78           미           미           미           미
8         s08         80           우           우           미           미
9         s09         76           미           미           미           미
10        s10         78           미           미           미           미

 

그런데 사용하다 보면 right 옵션, include.right 옵션, 그리고 labels 부여하는 순서도 그렇고, 머리속이 복잡해집니다. 아래의 ifelse()나 within() 함수는 위의 cut()보다는 수식의 부호를 직접 입력한다는 측면에서 사용하기에 더 편하고 직관적인 면이 있습니다.

 

 

(2) ifelse()

 

> attach(score_d.f)

> score_d.f <- transform(score_d.f, + stat_score_5 = ifelse(stat_score < 60, "가", + ifelse(stat_score >= 60 & stat_score < 70, "양", + ifelse(stat_score >= 70 & stat_score < 80, "미", + ifelse(stat_score >= 80 & stat_score < 90, "우", "수" + )))) + ) > detach(score_d.f) > score_d.f

 

 

 

 

 

> class(score_d.f$stat_score_5)
[1] "character"
 

 

위 표의 제일 오른쪽에 'stat_score_5' 변수가 ifelse() 함수를 이용해서 만든 범주형 변수가 되겠습니다.  cut() 대비 수식 등호, 부등호를 직접 입력하니 직관적으로 분석가가 원하는 범주로 수식을 적을 수 있는 장점이 있습니다만, 범주의 수준(level)이 많아질 수록 괄호 열고 닫는데 유의해야 합니다.  위의 예제의 경우 5개 범주로 나누는데 괄호 열고 "(((("  닫는 것이 "))))" 총 4개가 사용이 되었네요.  갯수 조심하지 않으면 콘솔 창에 에러날거예요.  RStudio 사용하면 ifelse() 괄호 하나씩 더해갈 때 마다 괄호 닫는것도 저절로 생기니 차근 차근 하시면 될겁니다.

 

그리고 stat_score_5 의 속성(class)이 요인(factor)이 아닌 문자(character)로 되어 있습니다.  만약 요인별로 통계 분석을 하고자 한다면 as.factor() 함수로 문자형을 요인형으로 먼저 변환을 시킨 후에 분석을 진행해야 합니다.

 

 

(3) within()

 

> ## within()
> score_d.f <- within( score_d.f, {
+   stat_score_6 = character(0) 
+   stat_score_6[ stat_score < 60 ] = "가" 
+   stat_score_6[ stat_score >=60 & stat_score < 70 ] = "양" 
+   stat_score_6[ stat_score >=70 & stat_score < 80 ] = "미" 
+   stat_score_6[ stat_score >=80 & stat_score < 90 ] = "우" 
+   stat_score_6[ stat_score >=90 ] = "수" 
+   
+   stat_score_6 = factor(stat_score_6, level = c("수", "우", "미", "양", "가"))
+ })
> 
> score_d.f$stat_score_6
 [1] 가 수 우 미 양 우 미 우 미 미
Levels: 수 우 미 양 가

 

 

 

within() 함수는 먼저 새로 만들 변수 stat_score_6 = character(0)  이라고 해서 문자형 변수라고 신규생성/지정을 해주고 시작합니다.

수식 등호, 부등호로 구간 설정하구요, 제일 마지막 줄에 factor() 함수로 해서 level = c("수", "우", "미", "양", "가") 라고 해서 수준을 지정해 줄 수 있습니다.  성적은 순서(order)가 있으므로 level 에 지정한 순서가 stat_score_6 요인 변수의 level 순서가 되겠습니다.

 

score_d.f$stat_score_6  라고 해서 indexing을 해서 보면 제일 아랫줄에 "Levels: 수 우 미 양 가" 라고 해서 순서가 제대로 인식되어 있음을 알 수 있습니다.  개인적으로 within() 함수를 순서형 요인변수 만들 때 위 셋 중에서 가장 많이 사용하는 편입니다.

 

아래는 제일 오른쪽에 within()함수로 만든 stat_score_6 변수까지 모두 한꺼번에 열어본 score_d.f 데이터 프레임이 되겠습니다. 

 

 

 

많은 도움이 되었기를 바랍니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

Posted by R Friend R_Friend

댓글을 달아 주세요

  1. kjh 2016.08.27 16:45  댓글주소  수정/삭제  댓글쓰기

    버전에 따라서 달라진건지는 모르겠지만요,
    within으로 만든 stat_score_5의 클래스가 character라고 나온다고 하셨는데
    코드 복사해서 제가 돌려보면 factor로 나오네요

    그리고 cut함수의 right와 include.lowest 관련해서
    위에 내용중에 코드보면 좀 헷갈리는 부분이 있어서요
    1. 만약 right=FALSE이면 include.lowest옵션은 줄 필요가 없는거 맞나요?
    2. right=FALSE일 경우, 구간 전체의 최대값(include.lowest와 반대되는 값)을 범주로 처리하는 옵션은 없는건가요?(?cut쳐봐도 안보이는 것 같아서요..)

    • kjh 2016.08.27 16:49  댓글주소  수정/삭제

      아 위 질문의 2번항목은 해결됐네요
      include.highest라는 옵션은 없고,
      include.lowest라는 옵션이 right=F일 경우 최대값을 처리해주기도 하는거였네요

  2. kjh 2016.08.27 16:57  댓글주소  수정/삭제  댓글쓰기

    위 2번 질문에 대해서 다른분들 참고하시라고 실습해본 코드 올립니다.

    id <- c("juice", "cola", "cloud", "haha", "light")
    score <- c(0, 10, 11, 20, 30)
    id_score <- data.frame(id, score)

    # right=TRUE이므로 구간을 0<x<=10,10<x<=20,20<x<=30 으로 분할.
    # include.lowest=FALSE 이므로, 0이 포함되지 않아서 juice의 categorized_score값이 NA처리됨.
    attach(id_score)
    id_score <- transform(id_score,
    categorized_score=cut(score, breaks=c(0,10,20,30),
    include.lowest=FALSE, right=TRUE,
    labels=c("C","B","A")
    )
    )
    id_score

    # right=FALSE이므로 구간을 0<=x<10,10<=x<20,20<=x<30 으로 분할.
    # 애초에 구간이 최소값 0도 포함하므로 include.lowest=T를 줄 필요가 없어보임.
    # 그러나 30점인 light의 경우 결과가 NA로 나옴.
    id_score <- transform(id_score,
    categorized_score=cut(score, breaks=c(0,10,20,30),
    right=FALSE,
    labels=c("C","B","A")
    )
    )
    id_score

    # right=FALSE이므로 구간을 0<=x<10,10<=x<20,20<=x<30 으로 분할.
    # 옵션명이 include.lowest이나, right=FALSE인 경우 최대값(여기서는 30)을 처리하는 옵션이 됨.
    # 즉, 아래처럼 include.lowest=T만 추가해주면 30점을 처리해줌.
    id_score <- transform(id_score,
    categorized_score=cut(score, breaks=c(0,10,20,30),
    right=FALSE, include.lowest=TRUE,
    labels=c("C","B","A")
    )
    )
    detach(id_score)
    id_score

  3. kjh 2016.08.27 18:05  댓글주소  수정/삭제  댓글쓰기

    ㅠㅠ 그리고 within이 이해가 안되는 부분이
    stat_score_6 = character(0)
    ~~

    이부분에 대해서, 이게 무슨뜻인지 처음 보는 문법인것 같아서요
    짤막하게나마 설명 부탁드립니다.
    (혹시 블로그 내에 설명되어 있는 부분이 있나요?)

    • R Friend R_Friend 2016.08.27 20:57 신고  댓글주소  수정/삭제

      새로 생성될 변수에 대해서 character 형이라고 미리 설정/할당해주는 것입니다.

      within()함수만의 독특한 프로그래밍 문법이구요, 그냥 이런거구나라고 하고 사용하시면 됩니다.

      사용자정의함수 짤때 가끔 빈 벡터를 미리 설정/할당하고 루프 돌리면서 채워나가는 경우가 있기은 한데요 , 패키지의 함수에서 within() 함수처럼 미리 character 형 미리 설정하는 경우는 매우 드물고 낯선게 사실입니다.

  4. hjh 2016.09.01 19:44  댓글주소  수정/삭제  댓글쓰기

    정리를 잘 해주셔서 정말 감사합니다.

    한 가지 궁금한 점이 있습니다. ifelse나 within을 쓸 때 위의 경우와 달리, stat_score와 새로운 열 stat_score2를 기준으로 하여 a,b,c로 나누고 싶을 땐 어떻게 해야할까요?

    예를 들어, 아래와 같이 데이터를 구성합니다.
    student_id <- c("s01", "s02", "s03", "s04", "s05", "s06", "s07", "s08", "s09", "s10")
    stat_score <- c(56, 94, 82, 70, 64, 82, 78, 80, 76, 78)
    stat_score2 <- c(1,2,3,4,5,6,7,8,9,10)
    score_d.f2 <- data.frame(student_id, stat_score, stat_score2)

    그리고 ifelse를 쓴다면 기준을 stat_score에 대해선 동일하게 두고,
    stat_score2 에 대한 기준도 만들어서 'a', 'b', 'c'로 범주화할 수 있게 하는 것입니다.
    stat_score2에 대한 기준을 예를 들어 stat_score2> 5와 stat_score2<=5와 같이 나누어서 모든 경우의 수를 다 '&'로 묶어주면 가능할까요?

    실제로 응용해보았는데 계속 에러가 나서 두 개의 열에 있는 데이터 각각의 조건을 합쳐서 새로운 범주형 데이터를 만드는 것은 다른 방법을 써야하는 것인지 여쭤보고 싶습니다!

    • R Friend R_Friend 2016.09.01 19:58 신고  댓글주소  수정/삭제

      hjh님, 가능합니다.

      transform() 함수에 ifelse 를 가자고 두 변수 & 조건을 걸면 됩니다.

      질문하신거에 딱 맞는 예제는 아닙니다만, 아래의 링크 참고하셔서 transform() 함수랑 ifelse & 조건 사용해서 테스트해보시기 바랍니다.

      http://rfriend.tistory.com/57

  5. 산낙지 2016.10.13 17:27  댓글주소  수정/삭제  댓글쓰기

    전에 assign 함수에서 질문했던 것을 transform으로 바꾸어 활용해보았는데요!

    for (i in 1:3) {
    pdt <- transform(pdt,
    paste("birth", i, sep=""), c(1,0,0,0,0)[match(paste("r_birth", i, sep=""), c(1, 2, 3, 4, 5))])
    }

    transform 함수를 loop에 넣을 경우엔 <-나 =를 인식하지 못하더라고요! 그래서 ,로 구분을 했습니다. 그런데 이건 명령어가 인식은 되는데 작동이 안 되네요 ㅠㅠ...
    사실 두 번째에 cut 예제도 loop를 이용하면 간단하게 줄일 수 있는 것 아닌가요? 구글에 아무리 'transform loop in r' 관련해서 검색해도 나오질 않네요 ㅠㅠ transform에는 어떻게 loop를 활용할 수 있는 것인가요?

  6. 배고파 2017.12.20 11:37  댓글주소  수정/삭제  댓글쓰기

    혹시 순서형 요인변수로 왜 만들어야 하는건가요? 시각화 할 때는 순서형으로 만들어 놓으면 그 가나다 순이 아닌 순서형 설정해놓은대로 나오던데 그 이유인지요? 회귀분석 할 때 순서형 변수를 명목형 변수로 바꾸는 경우도 있던데 이건 또 왜이런지 궁굼합니다!

    • R Friend R_Friend 2017.12.20 14:11 신고  댓글주소  수정/삭제

      시각화할때 요인형 변수 level 설정하는 이유는 댓글에 언급해주신 그 이유때문입니다.

      화귀분석할때 범주형변수의 코드별로 1, 0 의 가변수로 만들어 주어면 해당 변수의 코드별 y값에 대한 효과를 반영할 수 있습니다.

    • 배고파 2017.12.24 09:44  댓글주소  수정/삭제

      답변 감사합니다. 그럼 더미변수로 둘 때 순서형요인변수와 명목형변수가 차이가 있나요?