이번 포스팅에서는 Python pandas 의 Series, DataFrame의 행(row)과 열(column)에 대해서

 

 - 생성 (creation)

 - 선택 (selection, slicing and indexing)

 - 삭제 (drop, delete)

 

하는 방법에 대해서 알아보겠습니다.

 

외부 데이터셋을 불러오거나 직접 만든 다음에 데이터 전처리하는데 있어 수시로 사용하는 가장 기본이 되는 데이터 조작 기법이 행, 열 생성, 선택, 삭제입니다.

 

그동안의 포스팅을 따라해보신 분이라면 이미 많이 익숙해졌을 텐데요, 체계적으로 정리도 해보고, 복습도 해볼 겸 예를 들어서 설명해보겠습니다.

 

 

 

 

 

  (1) Series 생성 및 Series 원소 선택 (element selection, indexing)

 

pd.Series() 를 써서 별도의 index label 이 없는 간단한 Series 를 만들어 보겠습니다.

(index는 0, 1, 2, ... 정수가 자동 부여됨)

 

 

# importing library

In [1]: import numpy as np


In [2]: import pandas as pd

 


# pd.Series with ndarrary data

In [3]: Seri = pd.Series([0., 1., 2., 3., 4.])


In [4]: Seri

Out[4]:

0    0.0
1    1.0
2    2.0
3    3.0
4    4.0
dtype: float64

 

 

 

 

이제 Series의 index 위치나 조건을 가지고 indexing 을 해보겠습니다.

 

 

# Slicing pd.Series like ndarray-like

In [5]: Seri[0]

Out[5]: 0.0


In [6]: Seri[:3]

Out[6]:

0    0.0
1    1.0
2    2.0
dtype: float64


In [7]: Seri[Seri >= Seri.mean()]

Out[7]:

2    2.0
3    3.0
4    4.0
dtype: float64


In [8]: Seri[[4, 2, 0]]

Out[8]:

4    4.0
2    2.0
0    0.0
dtype: float64

 

 

 

 

다음으로, index에 label을 할당해준 Series를 만들어보고, 특정 index label을 지정해서 indexing을 해보겠습니다.

 

 

# pd.Series with index name passed

In [9]: Seri_ix = pd.Series([0., 1., 2., 3., 4.], index=['a', 'b', 'c', 'd', 'e'])


In [10]: Seri_ix

Out[10]:

a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

 


# Slicing with index label

In [11]: Seri_ix[['a', 'b', 'e']]

Out[11]:

a    0.0
b    1.0
e    4.0
dtype: float64


In [12]: Seri_ix.get(['a', 'b', 'e']) # get() method

Out[12]:

a    0.0
b    1.0
e    4.0
dtype: float64

 

 

 

 

특정 index label 을 지정해서 값(value)을 할당해보겠습니다.

 

 

# set values by index label
In [13]: Seri_ix['a'] = 100


In [14]: Seri_ix

Out[14]:

a    100.0
b      1.0
c      2.0
d      3.0
e      4.0
dtype: float64

 

 

 

 

특정 index label 이 Series에 들어있는지 아닌지 확인 (boolean True, False) 해보겠습니다.

 

 

# check index label whether it is or is'not in Series

In [15]: 'a' in Seri_ix

Out[15]: True


In [16]: 'x' in Seri_ix

Out[16]: False

 

 

 

 

 

  (2) DataFrame 행과 열 생성, 선택, 삭제 (creation, selection, drop of row and column)

 

예제로 사용할 간단한 DataFrame을 dict 로 칼럼과 값을 매핑하고, index 를 지정해서 만들어보겠습니다. DataFrame.index 로 index 확인, DataFrame.columns 로 칼럼 확인할 수 있습니다.

 

 

# importing library and making an example DataFrame

In [17]: from pandas import DataFrame


In [18]: df = DataFrame({'C1': [0., 1., 2., 3.],

    ...: 'C2': [4., 5., 6., 7.],

    ...: 'C3': [8., 9., 10., np.nan]},

    ...: index=['R1', 'R2', 'R3', 'R4'])

    ...:


In [19]: df

Out[19]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 


# the row and column labels

In [20]: df.index # row labels

Out[20]: Index(['R1', 'R2', 'R3', 'R4'], dtype='object')


In [21]: df.columns # column labels

Out[21]: Index(['C1', 'C2', 'C3'], dtype='object')

 

 

 

 

df_2 = DataFrame(df_1, index=['xx', 'xx'], columns=['xx', 'xx']) 형식처럼 기존 df_1에서 행과 열을 선별해서 df_2라는 새로운 DataFrame을 만들 수 있습니다.

 

 

In [22]: df_R1R3 = DataFrame(df, index=['R1', 'R3'])


In [23]: df_R1R3

Out[23]:

     C1   C2    C3
R1  0.0  4.0   8.0
R3  2.0  6.0  10.0


In [24]: df_C1C3 = DataFrame(df, columns=['C1', 'C3'])


In [25]: df_C1C3

Out[25]:

     C1    C3
R1  0.0   8.0
R2  1.0   9.0
R3  2.0  10.0
R4  3.0   NaN


In [26]: df_R3R1_C3C1 = DataFrame(df, index=['R3', 'R1'], columns=['C3', 'C1'])


In [27]: df_R3R1_C3C1

Out[27]:

      C3   C1
R3  10.0  2.0
R1   8.0  0.0

 

 

 

 

DataFrame에서 칼럼 이름을 지정해서 선별하는 방법은 아래 예시 처럼 df[['xx', 'xx']] 처럼 하면 됩니다.

 

 

# selecting columns from DataFrame

In [28]: df

Out[28]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN


In [29]: df[['C1', 'C2']]

Out[29]:

     C1   C2
R1  0.0  4.0
R2  1.0  5.0
R3  2.0  6.0
R4  3.0  7.0

 

 

 

 

DataFrame에 새로운 칼럼을 만들기때 (1) df['new_column'] = ... 과 (2) df.assign(new_column = ... ) 의 두가지 방법이 있습니다.

 

 

# (1) making a new column

In [30]: df['C4'] = df['C1'] + df['C2']


In [31]: df

Out[31]:

     C1   C2    C3    C4
R1  0.0  4.0   8.0   4.0
R2  1.0  5.0   9.0   6.0
R3  2.0  6.0  10.0   8.0
R4  3.0  7.0   NaN  10.0

 

 

# (2-1) assign() method

In [32]: df = df.assign(C5 = df['C1']*df['C2'])


In [33]: df

Out[33]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

# (2-2) the same with the above

In [34]: df.assign(C5 = lambda x: x.C1*x.C2)

Out[34]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

 

 

 

DataFrame의 칼럼을 삭제하는 방법에는 (1) df.drop(['xx', 'xx'], 1) 과 (2) del df['xx'] 의 방법이 있습니다.  del df['xx']은 원본 데이터프레임에서 칼럼을 삭제합니다.

 

 

# drop 'C3' column : DataFrame.drop('Column', 1)

In [35]: df_drop_C4C5 = df.drop(['C4', 'C5'], 1)


In [36]: df_drop_C4C5

Out[36]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 

 

# delete a column from original DataFrame : del DataFrame['column']

In [37]: df

Out[37]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

In [38]: del df['C4']  # delete 'C4' column from the original DataFrame df directly


In [39]: del df['C5']  # delete 'C5' column from the original DataFrame df directly


In [40]: df

Out[40]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 

 

 

 

DataFrame의 행(row)과 열(column)을 선택할 때는 df.['xx'][0:2] 를 예를 들어 소개합니다.

 

 

In [42]: df

Out[42]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 


# selecting column form DataFrame

In [43]: df['C1']

Out[43]:

R1    0.0
R2    1.0
R3    2.0
R4    3.0
Name: C1, dtype: float64


In [44]: df.C1

Out[44]:

R1    0.0
R2    1.0
R3    2.0
R4    3.0
Name: C1, dtype: float64

 

# selecting row from DataFrame

In [45]: df[0:2]

Out[45]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

# indexing 'column' and 'row' from DataFrame

In [46]: df['C1'][0:2]

Out[46]:

R1    0.0
R2    1.0
Name: C1, dtype: float64


In [47]: df.C1[0:2]

Out[47]:

R1    0.0
R2    1.0
Name: C1, dtype: float64

 

 

 

 

index label을 가지고 행(row) 선택할 때는 df.loc['xx'] 를 사용합니다.

 

 

# Select row by label : df.loc[label]

In [48]: df.loc['R1']

Out[48]:

C1    0.0
C2    4.0
C3    8.0
Name: R1, dtype: float64


In [49]: df.loc[['R1', 'R2']]

Out[49]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

index의 label 이 아니라 정수(integer)로 indexing을 하려면 df.iloc[int] 를 사용해야 합니다.  만약 df.loc[int]를 사용하면 TypeError 가 발생합니다.

 

 

# TypeError: cannot do label indexing on with these indexers [0] of <class 'int'>

In [50]: df.loc[0] # TypeError

TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> with these indexers [0] of <class 'int'>

 

 

# Select row by interger location : df.iloc[loc]

In [51]: df.iloc[0]

Out[51]:

C1    0.0
C2    4.0
C3    8.0
Name: R1, dtype: float64


In [52]: df.iloc[0:2]

Out[52]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

DataFrame의 행(row) indexing할 때 df[0:2] 처럼 행의 범위를 ':'로 설정해주어도 됩니다.  df[0] 처럼 정수값을 지정하면 KeyError 납니다(이때는 df.iloc[0] 을 써야 함).

 

 

# KeyError: 0

In [53]: df[0]  # KeyError: 0

KeyError: 0

 

 

# Select rows : df[0:2]

In [54]: df[0:2]

Out[54]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

조건을 부여해서 열을 선택할 수도 있습니다.

 

 

# Select rows by boolean vector : df[bool_vec]

In [55]: df[df['C1'] <= 1.0]

Out[55]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

 

선택할 칼럼을 벡터 객체로 만들어 놓고, DataFrame에서 벡터 객체에 들어있는 칼럼만 선별해올 수도 있겠지요. 분석 프로세스를 자동화하려고 할 때 선행 분석 결과를 받아서 벡터 객체로 만들어 놓고, 이를 받아서 필요한 변수만 선별할 때 종종 사용하곤 합니다.

 


# Select columns by column vector : df[col_bool_vec]

In [56]: df_col_selector = ['C1', 'C2']


In [57]: df[df_col_selector]

Out[57]:

     C1   C2
R1  0.0  4.0
R2  1.0  5.0
R3  2.0  6.0
R4  3.0  7.0

 

 

 

많은 도움 되었기를 바랍니다.

 

 

 

 

 

 

 

 

728x90
반응형
Posted by Rfriend
,