DataFrame을 가지고 분석을 진행하다 보면 대부분의 경우 결측값(missing value)이 골치거리로 따라 다닙니다.

 

데이터가 원래 수집 혹은 측정이 안되었을 수도 있고, 다수의 DataFrame을 서로 병합하는 과정에서 결측값이 생길 수도 있으며, index를 재설정(reindex)하는 경우에도 결측값이 생길 수 있습니다.

 

이처럼 다양한 이유로 인해서 생기는 결측값은 분석 오류가 발생시키거나 혹은 왜곡시킬 위험이 있습니다. 따라서 분석할 DataFrame을 생성했으면 결측값(missing value)이 있는지 여부에 대해서 꼭 확인하고 조치하여야 합니다.

 

이번 포스팅에서는 Python pandas의 isnull(), notnull() 메소드를 활용해서 결측값이 있는지 여부를 확인하는 방법을 소개하겠습니다.

 

 

 

 

Python pandas에서는 결측값을 'NaN' 으로 표기하며, 'None'도 결측값으로 인식합니다.

 

 

먼저 결측값이 있는 DataFrame을 만들어보겠습니다.

 

 

# making DataFrame with missing values

In [1]: import pandas as pd


In [2]: from pandas import DataFrame


In [3]: df_left = DataFrame({'KEY': ['K0', 'K1', 'K2', 'K3'],

   ...: 'A': ['A0', 'A1', 'A2', 'A3'],

   ...: 'B': [0.5, 2.2, 3.6, 0.4]})


In [4]: df_right = DataFrame({'KEY': ['K2', 'K3', 'K4', 'K5'],

   ...: 'C': ['C2', 'C3', 'C4', 'C5'],

   ...: 'D': ['D2', 'D3', 'D4', 'D5']})


In [5]: df_all = pd.merge(df_left, df_right, how='outer', on='KEY')


In [6]: df_all

Out[6]:

     A    B KEY    C    D
0   A0  0.5  K0  NaN  NaN
1   A1  2.2  K1  NaN  NaN
2   A2  3.6  K2   C2   D2
3   A3  0.4  K3   C3   D3
NaN  NaN  K4   C4   D4
NaN  NaN  K5   C5   D5

 

 

 

 

  (1) DataFrame 전체의 결측값 여부 확인 : df.isnull(), isnull(df), df.notnull(), notnull(df)

 

isnull() 메소드는 관측치가 결측이면 True, 결측이 아니면 False boollean 값을 반환합니다.

notnull() 메소드는 관측치가 결측이면 False, 결측이 아니면 True를 반환합니다.(isnull() 과 정반대)

 

isnull(DataFrame) 과 DataFrame.isnull() 은 동일한 값을 반환하며, notnull(DataFrame)과 DataFrame.notnull() 역시 동일한 의미의 script 입니다.

 

 

In [7]: pd.isnull(df_all)

Out[7]:

       A      B    KEY      C      D
0  False  False  False   True   True
1  False  False  False   True   True
2  False  False  False  False  False
3  False  False  False  False  False
4   True   True  False  False  False
5   True   True  False  False  False


In [8]: df_all.isnull()

Out[8]:

       A      B    KEY      C      D
0  False  False  False   True   True
1  False  False  False   True   True
2  False  False  False  False  False
3  False  False  False  False  False
4   True   True  False  False  False
5   True   True  False  False  False


In [9]: pd.notnull(df_all)

Out[9]:

       A      B   KEY      C      D
0   True   True  True  False  False
1   True   True  True  False  False
2   True   True  True   True   True
3   True   True  True   True   True
False  False  True   True   True
False  False  True   True   True

 

In [10]: df_all.notnull()

Out[10]:

       A      B   KEY      C      D
0   True   True  True  False  False
1   True   True  True  False  False
2   True   True  True   True   True
3   True   True  True   True   True
False  False  True   True   True
False  False  True   True   True

 

 

 

  (2) 특정 변수, 원소에 결측값 추가하기, 결측값 여부 확인하기 : indexing & None

 

아래 예시의 'df_all' DataFrame 에서 ['A', 'B'] 칼럼의 ['0', '1'] index 위치에 있는 관측치에 'None'을 할당하여 결측치를 만들어보았습니다.

 

'A'칼럼의 경우 'string' 데이터 형식인데요, 'None'을 할당하니 'None'으로 입력되었습니다.  반면에, 'B' 칼럼의 경우 'float' 데이터 형식인데요, 'None'을 할당하니 'NaN'으로 자동으로 입력되었습니다.

 

DataFrame의 행, 열을 기준으로 indexing을 하고 싶을 때는 DataFrame.ix[[row1, row2], ['col1', 'col2']] 을 사용하면 됩니다.  아래 예시를 참고하세요.

 

 

In [11]: df_all

Out[11]:

     A        B  KEY    C    D
0   A0      0.5  K0  NaN  NaN
1   A1      2.2  K1  NaN  NaN
2   A2      3.6  K2   C2   D2
3   A3      0.4  K3   C3   D3
NaN  NaN  K4   C4   D4
NaN  NaN  K5   C5   D5

 

In [12]: df_all.ix[[0, 1], ['A', 'B']] = None


In [13]: df_all

Out[13]:

      A         KEY    C      D
None  NaN  K0  NaN  NaN
None  NaN  K1  NaN  NaN
2    A2     3.6   K2   C2   D2
3    A3     0.4   K3   C3   D3
4   NaN  NaN  K4   C4   D4
5   NaN  NaN  K5   C5   D5


In [14]: df_all[['A', 'B']].isnull()

Out[14]:

       A      B
0   True   True
1   True   True
2  False  False
3  False  False
4   True   True
5   True   True

 

 

 

 

  (3) 칼럼별 결측값 개수 구하기 : df.isnull().sum()

 

 

# counting missing value numbers for all columns

In [15]: df_all.isnull().sum()

Out[15]:

A      2
B      2
KEY    0
C      2
D      2
dtype: int64

 

# counting missing value numbers for 'A' column

In [16]: df_all['A'].isnull().sum()

Out[16]: 2

 

 

 

 

반대로, 칼럼별 결측값이 아닌 값의 개수를 구하려면 df.notnull().sum() 을 사용하면 됩니다.

 

 

# counting notnull value numbers for all columns

In [17]: df_all.notnull().sum()

Out[17]:
A      4
B      4
KEY    6
C      4
D      4
dtype: int64

 

 

 

 

  (4) 행(row) 단위로 결측값 개수 구하기 : df.isnull().sum(1)

       행(row) 단위로 실측값 개수 구하기 : df.notnull().sum(1)

 

 

In [18]: df_all

Out[18]:

     A    B KEY    C    D
0   A0  0.5  K0  NaN  NaN
1   A1  2.2  K1  NaN  NaN
2   A2  3.6  K2   C2   D2
3   A3  0.4  K3   C3   D3
4  NaN  NaN  K4   C4   D4
5  NaN  NaN  K5   C5   D5


In [19]: df_all['NaN_cnt'] = df_all.isnull().sum(1)


In [20]: df_all['NotNull_cnt'] = df_all.notnull().sum(1)


In [21]: df_all

Out[21]:

     A      B    KEY   C     D     NaN_cnt   NotNull_cnt
0   A0    0.5   K0  NaN  NaN      2            4
1   A1    2.2   K1  NaN  NaN      2            4
2   A2    3.6   K2   C2    D2        0            6
3   A3    0.4   K3   C3    D3        0            6
4  NaN  NaN  K4   C4    D4        2            4
5  NaN  NaN  K5   C5    D5        2            4

 

 

 

 

다음번 포스팅에서는 결측값 연산에 대해서 소개하겠습니다.

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 Python pandas의 merge() 함수를 사용해서 Key를 기준으로 DataFrame을 합치는 방법을 소개하였습니다.

 

이번 포스팅에서는 pandas의 merge(), join() 함수를 사용해서 index를 기준으로 DataFrame을 합치는 방법을 소개하도록 하겠습니다.

 

SQL이나 R 사용자라면 index 사용하는게 좀 낯설을 수도 있을 것 같습니다.

 

 

 

먼저 필요한 Library를 importing하고, 간단한 DataFrame 을 예로 만들어 보겠습니다.

 

 

In [1]: import pandas as pd


In [2]: from pandas import DataFrame


In [3]: df_left = DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],

   ...: 'B': ['B0', 'B1', 'B2', 'B3']},

   ...: index=['K0', 'K1', 'K2', 'K3'])


In [4]: df_right = DataFrame({'C': ['C2', 'C3', 'C4', 'C5'],

   ...: 'D': ['D2', 'D3', 'D4', 'D5']},

   ...: index=['K2', 'K3', 'K4', 'K5'])

   ...:


In [5]: df_left

Out[5]:

     A   B
K0  A0  B0
K1  A1  B1
K2  A2  B2
K3  A3  B3


In [6]: df_right

Out[6]:

     C   D
K2  C2  D2
K3  C3  D3
K4  C4  D4
K5  C5  D5

 

 

 

 

index를 기준으로 DataFrame을 합치는 방법에는 pd.merge() 와 join() 두 가지 방법이 있는데요, join() 이 code가 간결한 편이며, code에 대한 가독성은 pd.merge()가 좀더 명확한 편입니다.

 

 

  (1) index를 기준으로 Left Join 하기 (Left join on index)

 

 

# Left joining on index

# way 1 : by merge()

In [7]: pd.merge(df_left, df_right,

   ...: left_index=True, right_index=True,

   ...: how='left')

Out[7]:

     A   B    C    D
K0  A0  B0  NaN  NaN
K1  A1  B1  NaN  NaN
K2  A2  B2   C2   D2
K3  A3  B3   C3   D3

 

# way 2 : by join

In [8]: df_left.join(df_right, how='left')

Out[8]:

     A   B    C    D
K0  A0  B0  NaN  NaN
K1  A1  B1  NaN  NaN
K2  A2  B2   C2   D2
K3  A3  B3   C3   D3

 

 

 

 

  (2) index를 기준으로 Right Join 하기 (Right join on index)

 


# Right join on index

# way 1 : merge()

In [9]: pd.merge(df_left, df_right,

   ...: left_index=True, right_index=True,

   ...: how='right')

Out[9]:

      A    B   C   D
K2   A2   B2  C2  D2
K3   A3   B3  C3  D3
K4  NaN  NaN  C4  D4
K5  NaN  NaN  C5  D5

 

# way 2 : join()

In [10]: df_left.join(df_right, how='right')

Out[10]:

      A    B   C   D
K2   A2   B2  C2  D2
K3   A3   B3  C3  D3
K4  NaN  NaN  C4  D4
K5  NaN  NaN  C5  D5

 

 

 

 

  (3) index를 기준으로 inner join 하기 (inner join on index)

 

 

# inner join on index

# way 1 : by merge()

In [11]: pd.merge(df_left, df_right,

    ...: left_index=True, right_index=True,

    ...: how='inner')

Out[11]:

     A   B   C   D
K2  A2  B2  C2  D2
K3  A3  B3  C3  D3

 


# way 2 : by join()

In [12]: df_left.join(df_right, how='inner')

Out[12]:

     A   B   C   D
K2  A2  B2  C2  D2
K3  A3  B3  C3  D3

 

 

 

 

  (4) index를 기준으로 outer join 하기 (outer join on index)

 

 

# outer join on index

# way 1 : by pd.merge()

In [13]: pd.merge(df_left, df_right,

    ...: left_index=True, right_index=True,

    ...: how='outer')

Out[13]:

      A    B    C    D
K0   A0   B0  NaN  NaN
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3   A3   B3   C3   D3
K4  NaN  NaN   C4   D4
K5  NaN  NaN   C5   D5

 


# way 2 : by join()

In [14]: df_left.join(df_right, how='outer')

Out[14]:

      A    B    C    D
K0   A0   B0  NaN  NaN
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3   A3   B3   C3   D3
K4  NaN  NaN   C4   D4
K5  NaN  NaN   C5   D5

 

 

 


위의 4개의 index 기준 DataFrame 병합 사례에서는 양쪽 DataFrame 모두 index를 사용했습니다. 

 

그런데 만약 한쪽 DataFrame은 index를 기준으로 하고, 나머지 한쪽 DataFrame에서는 Key 변수를 기준으로 해서 두 DataFrame을 합쳐야 한다면 어떻게 해야 할까요?

 

pd.merge()와 join() 두 가지 방법을 how='left' 의 경우만 예를 들어서 설명하겠습니다.  역시 join() 이 script가 간결한 반면, pd.merge()가 병합의 기준을 명시해줌으로써 가독성은 더 좋습니다. 뭘 사용할지는 개인의 취향에 따라 선택하시면 됩니다.

 

 

  (5) index와 Key를 혼합해서 DataFrame 합치기 (Joining key columns on an index)

 

먼저 df_left_2 는 'KEY' 를 가진 DataFrame으로 만들고, df_right_2는 index를 가진 DataFrame으로 만든 후에 이 둘을 'KEY'와 index를 혼합해서 사용해서 합쳐보겠습니다.

 

 

# making DataFrame 

In [15]: df_left_2 = DataFrame({'KEY': ['K0', 'K1', 'K2', 'K3'],

    ...: 'A': ['A0', 'A1', 'A2', 'A3'],

    ...: 'B': ['B0', 'B1', 'B2', 'B3']})

    ...:


In [16]: df_right_2 = DataFrame({'C': ['C2', 'C3', 'C4', 'C5'],

    ...: 'D': ['D2', 'D3', 'D4', 'D5']},

    ...: index=['K2', 'K3', 'K4', 'K5'])

    ...:


In [17]: df_left_2  # with 'KEY'

Out[17]:

    A   B KEY
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K2
3  A3  B3  K3


In [18]: df_right_2  # with 'index'

Out[18]:

     C   D
K2  C2  D2
K3  C3  D3
K4  C4  D4
K5  C5  D5

 

 

 

 

이제 Key와 index를 혼합해서 두 DataFrame을 합쳐보겠습니다.

 

 

# joining key columns on an index

# way 1 : pd.merge()

In [19]: pd.merge(df_left_2, df_right_2,

    ...: left_on='KEY', right_index=True,

    ...: how='left')

    ...:

Out[19]:

    A   B KEY    C    D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1  NaN  NaN
2  A2  B2  K2   C2   D2
3  A3  B3  K3   C3   D3

 

 

# way 2 : join()

In [20]: df_left_2.join(df_right_2, on='KEY', how='left')

Out[20]:

    A   B KEY    C    D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1  NaN  NaN
2  A2  B2  K2   C2   D2
3  A3  B3  K3   C3   D3

 

 

 

이상으로 DataFrame을 index 기준으로 합치는 방법에 대한 소개를 마치겠습니다.

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요

데이터 분석을 하다 보면 여기 저기 흩어져 있는 데이터를 특정한 Key를 기준으로 병합해서 분석해야 하는 경우가 매우 많습니다.

 

지난번 포스팅에서는 DataFrame을 pandas의 concat() 함수를 이용해서 합치는 방법, append() 함수를 사용해서 합치는 방법을 소개하였습니다.

 

이번 포스팅에서는 SQL을 사용해서 Database의 Table 들을 Join/Merge 하는 것과 유사하게 Python pandas의 pd.merge() 함수를 사용해서 DataFrame을 Key 기준으로 inner, outer, left, outer join 하여 합치는 방법을 소개하도록 하겠습니다.

 

SQL을 사용하는데 익숙한 분석가라면 매우 쉽고 빠르게 이해하실 수 있을 것입니다. 그리고 Python의 merge() 기능은 메모리 상에서 매우 빠르게 작동함으로 사용하는데 있어 불편함이 덜할 것 같습니다.

 

 

 

 

 

pandas merge 함수 설정값들은 아래와 같이 여러개가 있는데요, 이중에서  'how'와 'on'은 꼭 기억해두셔야 합니다.

 

 

pd.merge(left, right, # merge할 DataFrame 객체 이름
             how='inner', # left, rigth, inner (default), outer
             on=None, # merge의 기준이 되는 Key 변수
             left_on=None, # 왼쪽 DataFrame의 변수를 Key로 사용
             right_on=None, # 오른쪽 DataFrame의 변수를 Key로 사용
             left_index=False, # 만약 True 라면, 왼쪽 DataFrame의 index를 merge Key로 사용
             right_index=False, # 만약 True 라면, 오른쪽 DataFrame의 index를 merge Key로 사용
             sort=True, # merge 된 후의 DataFrame을 join Key 기준으로 정렬
             suffixes=('_x', '_y'), # 중복되는 변수 이름에 대해 접두사 부여 (defaults to '_x', '_y'
             copy=True, # merge할 DataFrame을 복사
             indicator=False) # 병합된 이후의 DataFrame에 left_only, right_only, both 등의 출처를 알 수 있는 부가 정보 변수 추가

 

 

 

먼저, pandas, DataFrame library를 importing 한 후에, 2개의 DataFrame을 만들어보겠습니다.

 

 

In [1]: import pandas as pd


In [2]: from pandas import DataFrame


In [3]: df_left = DataFrame({'KEY': ['K0', 'K1', 'K2', 'K3'],

   ...: 'A': ['A0', 'A1', 'A2', 'A3'],

   ...: 'B': ['B0', 'B1', 'B2', 'B3']})

   ...:


In [4]: df_right = DataFrame({'KEY': ['K2', 'K3', 'K4', 'K5'],

   ...: 'C': ['C2', 'C3', 'C4', 'C5'],

   ...: 'D': ['D2', 'D3', 'D4', 'D5']})

   ...:


In [5]: df_left

Out[5]:

    A   B KEY
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K2
3  A3  B3  K3


In [6]: df_right

Out[6]:

    C   D KEY
0  C2  D2  K2
1  C3  D3  K3
2  C4  D4  K4
3  C5  D5  K5

 

 

 

 

 

'how' 의 left, right, inner, outer 별로 위에서 만든 'df_left'와 'df_right' 두 개의 DataFrame을 'KEY' 변수를 기준으로 merge 해보겠습니다.  SQL join에 익숙하신 분이라면 쉽게 이해할 수 있을 것입니다.

 

 

  (1) Merge method : left (SQL join name : LEFT OUTER JOIN)

 

 

In [7]: df_merge_how_left = pd.merge(df_left, df_right,

   ...: how='left',

   ...: on='KEY')

   ...:


In [8]: df_merge_how_left

Out[8]:

     A   B   KEY   C     D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1  NaN  NaN
2  A2  B2  K2   C2   D2
3  A3  B3  K3   C3   D3 

 

 

 

 

  (2) Merge method : right (SQL join name : RIGHT OUTER JOIN)

 

 

In [9]: df_merge_how_right = pd.merge(df_left, df_right,

   ...: how='right',

   ...: on='KEY')


In [10]: df_merge_how_right

Out[10]:

     A    KEY   C   D
0   A2   B2  K2  C2  D2
1   A3   B3  K3  C3  D3
2  NaN  NaN  K4  C4  D4
3  NaN  NaN  K5  C5  D5

 

 

 

 

  (3) Merge method : inner (SQL join name : INNER JOIN)

 

 

In [11]: df_merge_how_inner = pd.merge(df_left, df_right,

    ...: how='inner', # default

    ...: on='KEY')

    ...:


In [12]: df_merge_how_inner

Out[12]:

    A   B KEY   C   D
0  A2  B2  K2  C2  D2
1  A3  B3  K3  C3  D3

 

 

 

 

  (4) Merge method : outer (SQL join name : FULL OUTER JOIN)

 

 

In [13]: df_merge_how_outer = pd.merge(df_left, df_right,

    ...: how='outer',

    ...: on='KEY')

    ...:


In [14]: df_merge_how_outer

Out[14]:

     A    B  KEY    C    D
0   A0   B0  K0  NaN  NaN
1   A1   B1  K1  NaN  NaN
2   A2   B2  K2   C2   D2
3   A3   B3  K3   C3   D3
4  NaN  NaN  K4   C4   D4
5  NaN  NaN  K5   C5   D5

 

 

 

[참고] Hive 조인 문 : INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL JOIN, CARTESIAN PRODUCT JOIN, MAP-SIDE JOIN, UNION ALL : http://rfriend.tistory.com/216

 

 

 

  (5) indicator = True : 병합된 이후의 DataFrame에 left_only, right_only, both 등의 

                              출처를 알 수 있는 부가정보 변수 추가

 

 

In [15]: pd.merge(df_left, df_right, how='outer', on='KEY',

    ...: indicator=True)

Out[15]:

     A    B KEY    C    D      _merge
0   A0   B0  K0  NaN  NaN   left_only
1   A1   B1  K1  NaN  NaN   left_only
2   A2   B2  K2   C2   D2        both
3   A3   B3  K3   C3   D3        both
4  NaN  NaN  K4   C4   D4  right_only
5  NaN  NaN  K5   C5   D5  right_only

 

 

 

위에서는 indicator=True로 했더니 '_merge'라는 새로운 변수가 생겼습니다.

 

이 방법 외에도, 아래처럼 indicator='변수 이름(예: indicator_info)'을 설정해주면, 새로운 변수 이름에 indicator 정보가 반환됩니다.

 

 

In [16]: pd.merge(df_left, df_right, how='outer', on='KEY',

    ...: indicator='indicator_info')

Out[16]:

     A    B KEY    C    D indicator_info
0   A0   B0  K0  NaN  NaN      left_only
1   A1   B1  K1  NaN  NaN      left_only
2   A2   B2  K2   C2   D2           both
3   A3   B3  K3   C3   D3           both
4  NaN  NaN  K4   C4   D4     right_only
5  NaN  NaN  K5   C5   D5     right_only

 

 

 

 

  (6) 변수 이름이 중복될 경우 접미사 붙이기 : suffixes = ('_x', '_y')

 

'B'와 'C' 의 변수 이름이 동일하게 있는 두 개의 DataFrame을 만든 후에, KEY를 기준으로 합치기(merge)를 해보겠습니다.  변수 이름이 중복되므로 Data Source를 구분할 수 있도록 suffixes = ('string', 'string') 을 사용해서 중복되는 변수의 뒷 부분에 접미사를 추가해보겠습니다.  default는 suffixes = ('_x', '_y') 입니다.

 

 

# making DataFrames with overlapping columns

In [17]: df_left_2 = DataFrame({'KEY': ['K0', 'K1', 'K2', 'K3'],

    ...: 'A': ['A0', 'A1', 'A2', 'A3'],

    ...: 'B': ['B0', 'B1', 'B2', 'B3'],

    ...: 'C': ['C0', 'C1', 'C2', 'C3']})


In [18]: df_right_2 = DataFrame({'KEY': ['K0', 'K1', 'K2', 'K3'],

    ...: 'B': ['B0_2', 'B1_2', 'B2_2', 'B3_2'],

    ...: 'C': ['C0_2', 'C1_2', 'C2_2', 'C3_2'],

    ...: 'D': ['D0_2', 'D1_2', 'D2_2', 'D3_3']})

    ...:


In [19]: df_left_2

Out[19]:

    A   B   C KEY
0  A0  B0  C0  K0
1  A1  B1  C1  K1
2  A2  B2  C2  K2
3  A3  B3  C3  K3


In [20]: df_right_2

Out[20]:

      B     C     D KEY
0  B0_2  C0_2  D0_2  K0
1  B1_2  C1_2  D1_2  K1
2  B2_2  C2_2  D2_2  K2
3  B3_2  C3_2  D3_3  K3

 


# adding string suffixes to apply to overlapping columns

In [21]: pd.merge(df_left_2, df_right_2, how='inner', on='KEY',

    ...: suffixes=('_left', '_right'))

    ...:

Out[21]:

    A B_left C_left KEY B_right C_right     D
0  A0     B0     C0  K0    B0_2    C0_2  D0_2
1  A1     B1     C1  K1    B1_2    C1_2  D1_2
2  A2     B2     C2  K2    B2_2    C2_2  D2_2
3  A3     B3     C3  K3    B3_2    C3_2  D3_3

 


# suffixes defaults to ('_x', '_y') 

In [22]: pd.merge(df_left_2, df_right_2, how='inner', on='KEY')

    ...:

Out[22]:

    A B_x C_x KEY   B_y   C_y     D
0  A0  B0  C0  K0  B0_2  C0_2  D0_2
1  A1  B1  C1  K1  B1_2  C1_2  D1_2
2  A2  B2  C2  K2  B2_2  C2_2  D2_2
3  A3  B3  C3  K3  B3_2  C3_2  D3_3

 

 

 

 

 

left_on, right_on, left_index, right_index 에 대해서는 다음번 포스팅에서 소개하도록 하겠습니다.

 

Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 DataFrame을 Python pandas 라이브러리의 pd.concat() 함수를 사용해서 상+하로 합치기, 좌+우로 합치기를 해보았습니다.

 

이번 포스팅에서는 이어서 DataFrame과 Series를 pd.concat() 함수, append() 함수를 사용해서 합치기를 소개하겠습니다.  

 

DataFrame 끼리 합치기 대비 해서 DataFrame + Series 가 index 관련해서 좀 헷갈리는게 있습니다만, 아래의 간단한 예시를 참고하면 어렵지 않게 이해할 수 있을 것입니다.

 

 

 

pandas, DataFrame, Series importing 부터 시작해 보시죠.

 

 

# importing libraries

 

In [1]: import pandas as pd

   ...: from pandas import DataFrame

   ...: from pandas import Series

 

 

 

 

  (1) DataFrame에 Series '좌+우' 합치기 : pd.concat([df, Series], axis=1)

 

DataFrame과 Series가 합쳐지면 DataFrame이 됩니다. axis=1 을 설정하면 '좌+우' 형태로 열(column)이 오른쪽 옆으로 늘어납니다. 

 

새로 합쳐지는 DataFrame의 열 이름(column name)을 유심히 살펴보세요.  Series의 이름(name)이 새로운 DataFrame의 변수 이름이 됩니다.

 

 

In [2]: df_1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],

   ...: 'B': ['B0', 'B1', 'B2'],

   ...: 'C': ['C0', 'C1', 'C2'],

   ...: 'D': ['D0', 'D1', 'D2']},

   ...: index=[0, 1, 2])


In [3]: df_1

Out[3]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2


In [4]: Series_1 = pd.Series(['S1', 'S2', 'S3'], name='S')


In [5]: Series_1

Out[5]:

0    S1
1    S2
2    S3
Name: S, dtype: object

 

# Concatenating DataFrame and Series along columns (from left to right)

# concatenated column name of the new DataFrame will be the same name of Series

In [6]: pd.concat([df_1, Series_1], axis=1)

Out[6]:

    A    B    C   D   S
0  A0  B0  C0  D0  S1
1  A1  B1  C1  D1  S2
2  A2  B2  C2  D2  S3

 

 

 

 

  (2) DataFrame에 Series를 '좌+우'로 합칠 때

      열 이름(column name) 무시하고 정수 번호 자동 부여 : ignore_index=True

 

 

In [7]: pd.concat([df_1, Series_1], axis=1, ignore_index=True)

Out[7]:

    0    1    2    3    4
0  A0  B0  C0  D0  S1
1  A1  B1  C1  D1  S2
2  A2  B2  C2  D2  S3

 

 

 

 

  (3) Series 끼리 '좌+우'로 합치기 : pd.concat([Series1, Series2, ...], axis=1)

 

만약 Series의 이름(name)이 있으면 합쳐진 DataFrame의 열 이름(column name)으로 사용됩니다. Series에 이름이 없다면 정수 0, 1, 2, ... 가 자동 부여 됩니다.

 

 

In [8]: Series_1 = pd.Series(['S1', 'S2', 'S3'], name='S')


In [9]: Series_2 = pd.Series([0, 1, 2]) # without name


In [10]: Series_3 = pd.Series([3, 4, 5]) # without name


In [11]: Series_1

Out[11]:

0    S1
1    S2
2    S3

Name: S, dtype: object


In [12]: Series_2

Out[12]:

0    0
1    1
2    2
dtype: int64


In [13]: Series_3

Out[13]:

0    3
1    4
2    5
dtype: int64

 

# name of Series will be used as the column name of concatenated DataFrame

In [14]: pd.concat([Series_1, Series_2, Series_3], axis=1)

Out[14]:

     S  0  1
0  S1  0  3
1  S2  1  4
2  S3  2  5

 

 

 

 

  (4) Series 끼리 합칠 때 열 이름(column name) 덮어 쓰기 : keys = ['xx', 'xx', ...]

 

 

In [15]: pd.concat([Series_1, Series_2, Series_3], axis=1, keys=['C0', 'C1', 'C1'])

Out[15]:

   C0  C1  C1
0  S1   0   3
1  S2   1   4
2  S3   2   5

 

 

 

 

  (5) DataFrame에 Series를 '위+아래'로 합치기 : df.append(Series, ignore_index=True)

 

ignore_index=True 를 설정해주도록 합니다. 

 

 

In [16]: df_1

Out[16]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2


In [17]: Series_4 = pd.Series(['S1', 'S2', 'S3', 'S4'], index=['A', 'B', 'C', 'E'])


In [18]: Series_4

Out[18]:

A    S1
B    S2
C    S3
E
    S4
dtype: object


In [19]: df_1.append(Series_4, ignore_index=True)

Out[19]:

    A    B   C    D    E
0  A0  B0  C0   D0  NaN
1  A1  B1  C1   D1  NaN
2  A2  B2  C2   D2  NaN
3  S1  S2  S3  NaN   S4

 

 

 

 

ignore_index=True 를 설정해주지 않으면 아래처럼 'TypeError' 가 발생합니다.

 

 

In [20]: df_1.append(Series_4) # TypeError without 'ignore_index=True'

Traceback (most recent call last):


File "<ipython-input-20-ca24d6ef8563>", line 1, in <module>

df_1.append(Series_4) # TypeError without 'ignore_index=True'


File "C:\Anaconda3\lib\site-packages\pandas\core\frame.py", line 4314, in append

raise TypeError('Can only append a Series if ignore_index=True'


TypeError: Can only append a Series if ignore_index=True or if the Series has a name

 

 

 

이번 포스팅이 도움이 되었다면 아래의 '공감~♡'를 꾹 눌러주세요. ^^

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요

분석을 하다보면 여기저기 흩어져 있는 여러 개의 데이터 테이블을 모아서 합쳐야 하는 일이 생기곤 합니다. 나를 대신해서 누군가가 데이터 전처리를 해주지 않는다고 했을 때는 말이지요.

 

특히 정규화해서 Database 관리를 하는 곳이라면 주제별로 Data Entity를 구분해서 여러 개의 Table들로 데이터가 나뉘어져 있을 것입니다.

 

특히, 데이터의 속성 형태가 동일한 데이터셋(homogeneously-typed objects)끼리 합칠 때 사용할 수 있는 pandas의 DataFrame 합치는 방법(concatenating DataFrames)으로 이번 포스팅에서는 pd.concat() 함수를 소개하겠습니다.

(R의 rbind(), cbind() 와 유사함)

 

pd.concat() 의 parameter 값들의 default setting은 아래와 같습니다. 하나씩 예를 들어가면서 소개하겠습니다.

 

 

pd.concat(objs,  # Series, DataFrame, Panel object

             axis=0,  # 0: 위+아래로 합치기, 1: 왼쪽+오른쪽으로 합치기

             join='outer', # 'outer': 합집합(union), 'inner': 교집합(intersection)

             join_axes=None, # axis=1 일 경우 특정 DataFrame의 index를 그대로 이용하려면 입력

             ignore_index=False,  # False: 기존 index 유지, True: 기존 index 무시
             keys=None, # 계층적 index 사용하려면 keys 튜플 입력

             levels=None,

             names=None, # index의 이름 부여하려면 names 튜플 입력

             verify_integrity=False, # True: index 중복 확인
             copy=True) # 복사

 

 

 

 

  (1-1) 위 + 아래로 DataFrame 합치기(rbind) : axis = 0

 

 

# importing libraries

In [1]: import pandas as pd

   ...: from pandas import DataFrame

 

 

 

# making DataFrames

In [2]: df_1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],

   ...: 'B': ['B0', 'B1', 'B2'],

   ...: 'C': ['C0', 'C1', 'C2'],

   ...: 'D': ['D0', 'D1', 'D2']},

   ...: index=[0, 1, 2])


In [3]: df_2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'],

   ...: 'B': ['B3', 'B4', 'B5'],

   ...: 'C': ['C3', 'C4', 'C5'],

   ...: 'D': ['D3', 'D4', 'D5']},

   ...: index=[3, 4, 5])

 

In [4]: df_1

Out[4]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2


In [5]: df_2

Out[5]:

    A   B   C   D
3  A3  B3  C3  D3
4  A4  B4  C4  D4
5  A5  B5  C5  D5

 

 

 

# concatenating DataFrame1, 2 along rows, axis=0, default

In [6]: df_12_axis0 = pd.concat([df_1, df_2]) # row bind : axis = 0, default


In [7]: df_12_axis0

Out[7]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  A4  B4  C4  D4
5  A5  B5  C5  D5

 

 

 

 

 (1-2) 왼쪽 + 오른쪽으로 DataFrame 합치기(cbind) : axis = 1

 

 

In [8]: df_3 = pd.DataFrame({'E': ['A6', 'A7', 'A8'],

   ...: 'F': ['B6', 'B7', 'B8'],

   ...: 'G': ['C6', 'C7', 'C8'],

   ...: 'H': ['D6', 'D7', 'D8']},

   ...: index=[0, 1, 2])

 

In [9]: df_1

Out[9]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2


In [10]: df_3

Out[10]:

    E   F   G   H
0  A6  B6  C6  D6
1  A7  B7  C7  D7
2  A8  B8  C8  D8

 

 

 

# concatenating DataFrames along columns, axis=1

In [11]: df_13_axis1 = pd.concat([df_1, df_3], axis=1) # column bind


In [12]: df_13_axis1

Out[12]:

     A   B   C   D    E    F    G   H
0  A0  B0  C0  D0  A6  B6  C6  D6
1  A1  B1  C1  D1  A7  B7  C7  D7
2  A2  B2  C2  D2  A8  B8  C8  D8

 

 

 

 

 (2-1) 합집합(union)으로 DataFrame 합치기 : join = 'outer'

 

 

In [13]: df_4 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],

    ...: 'B': ['B0', 'B1', 'B2'],

    ...: 'C': ['C0', 'C1', 'C2'],

    ...: 'E': ['E0', 'E1', 'E2']},

    ...: index=[0, 1, 3])


In [17]: df_1

Out[17]:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2


In [18]: df_4

Out[18]:

     A   B   C   E
0  A0  B0  C0  E0
1  A1  B1  C1  E1
3  A2  B2  C2  E2


In [19]: df_14_outer = pd.concat([df_1, df_4], join='outer') # union, default


In [20]: df_14_outer

Out[20]:

     A   B   C    D    E
0  A0  B0  C0   D0  NaN
1  A1  B1  C1   D1  NaN
2  A2  B2  C2   D2  NaN
0  A0  B0  C0  NaN   E0
1  A1  B1  C1  NaN
   E1
3  A2  B2  C2  NaN   E2

 

 

 

 

 (2-2) 교집합(intersection)으로 DataFrame 합치기 : join = 'inner'

 

 

In [21]: df_14_inner = pd.concat([df_1, df_4], join='inner') # intersection


In [22]: df_14_inner

Out[22]:

    A   B   C
0  A0  B0  C0
1  A1  B1  C1
2  A2  B2  C2
0  A0  B0  C0
1  A1  B1  C1
3  A2  B2  C2

 

 

 

 

 (3) axis=1일 경우 특정 DataFrame의 index를 그대로 이용하고자 할 경우 : join_axes

 

아래에 axis=1 (왼쪽+오른쪽) 인 경우, join='outer', join='inner', join_axes=[df.index] 의 3개 방법을 소개하였습니다. 합쳐진 DataFrame의 index 를 유심히 비교해보시기 바랍니다.

 

 

In [23]: df_1

Out[23]:

     A   B   C   D
 0  A0  B0  C0  D0
 1  A1  B1  C1  D1
 2  A2  B2  C2  D2


In [24]: df_4

Out[24]:

     A   B   C   E
 0  A0  B0  C0  E0
 1  A1  B1  C1  E1
 3  A2  B2  C2  E2

 

# comparison 1
In [25]: df_14_outer_axis1 = pd.concat([df_1, df_4], join='outer', axis=1) # default


In [26]: df_14_outer_axis1

Out[26]:

      A    B    C    D    A    B    C    E
 0   A0   B0   C0   D0   A0   B0   C0   E0
 1   A1   B1   C1   D1   A1   B1   C1   E1
 2   A2   B2   C2   D2  NaN  NaN  NaN  NaN
 3  NaN  NaN  NaN  NaN   A2   B2   C2   E2

 

# comparison 2 

In [29]: df_14_inner_axis1 = pd.concat([df_1, df_4], join='inner', axis=1)


In [30]: df_14_inner_axis1

Out[30]:

     A   B   C   D   A   B   C   E
 0  A0  B0  C0  D0  A0  B0  C0  E0
 1  A1  B1  C1  D1  A1  B1  C1  E1

 

 

# reuse the exact index from the original DataFrame : join_axes

In [31]: df_14_join_axes_axis1 = pd.concat([df_1, df_4], join_axes=[df_1.index], axis=1)


In [32]: df_14_join_axes_axis1

Out[32]:

     A   B   C   D    A    B    C    E
 0  A0  B0  C0  D0   A0   B0   C0   E0
 1  A1  B1  C1  D1   A1   B1   C1   E1
 2  A2  B2  C2  D2  NaN  NaN  NaN  NaN

 

 

 

 (4) 기존 index를 무시하고 싶을 때 : ignore_index

 

 

In [33]: df_5 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],

    ...: 'B': ['B0', 'B1', 'B2'],

    ...: 'C': ['C0', 'C1', 'C2'],

    ...: 'D': ['D0', 'D1', 'D2']},

    ...: index=['r0', 'r1', 'r2'])


In [34]: df_6 = pd.DataFrame({'A': ['A3', 'A4', 'A5'],

    ...: 'B': ['B3', 'B4', 'B5'],

    ...: 'C': ['C3', 'C4', 'C5'],

    ...: 'D': ['D3', 'D4', 'D5']},

    ...: index=['r3', 'r4', 'r5'])

 

In [35]: df_56_with_index = pd.concat([df_5, df_6], ignore_index=False) # default


In [36]: df_56_with_index

Out[36]:

     A   B   C   D
 r0  A0  B0  C0  D0
 r1  A1  B1  C1  D1
 r2  A2  B2  C2  D2
 r3  A3  B3  C3  D3
 r4  A4  B4  C4  D4
 r5  A5  B5  C5  D5

 

# if you want ignore current index, use 'ignore_index=True'

In [37]: df_56_ignore_index = pd.concat([df_5, df_6], ignore_index=True)# index 0~(n-1)


In [38]: df_56_ignore_index

Out[38]:

    A   B   C   D
 0  A0  B0  C0  D0
 1  A1  B1  C1  D1
 2  A2  B2  C2  D2
 3  A3  B3  C3  D3
 4  A4  B4  C4  D4
 5  A5  B5  C5  D5

 

 

 

 

 (5) 계층적 index (hierarchical index) 만들기 : keys 

 

 

# concatenating DataFrames : Construct hierarchical index using 'keys'


In [40]: df_56_with_keys = pd.concat([df_5, df_6], keys=['df_5', 'df_6'])


In [41]: df_56_with_keys

Out[41]:

            A   B   C   D
 df_5  r0  A0  B0  C0  D0
         r1  A1  B1  C1  D1
         r2  A2  B2  C2  D2
 df_6  r3  A3  B3  C3  D3
         r4  A4  B4  C4  D4
         r5  A5  B5  C5  D5 

 

 

 

참고로, 계층적 index를 가지고 indexing 하는 방법을 아래에 예를 들어 소개하겠습니다.  'df_56_with_keys' DataFrame은 index가 1층, 2층으로 계층을 이루고 있으므로 indexing 할 때 1층용 index와 2층용 index를 따로 따로 사용하면 됩니다. 아래 예시를 참고하세요.

 

 

In [42]: df_56_with_keys.ix['df_5']

Out[42]:

     A   B   C   D
r0  A0  B0  C0  D0
r1  A1  B1  C1  D1
r2  A2  B2  C2  D2


In [43]: df_56_with_keys.ix['df_5'][0:2]

Out[43]:

     A   B   C   D
r0  A0  B0  C0  D0
r1  A1  B1  C1  D1

 

 

 

 

 (6) index에 이름 부여하기 : names

 

 

In [44]: df_56_with_name = pd.concat([df_5, df_6],

    ...: keys=['df_5', 'df_6'],

    ...: names=['df_name', 'row_number'])


In [45]: df_56_with_name

Out[45]:

                                 A   B   C   D
df_name   row_number               
df_5         r0                A0  B0  C0  D0
              r1                A1  B1  C1  D1
              r2                A2  B2  C2  D2
df_6         r3                A3  B3  C3  D3
              r4                A4  B4  C4  D4
              r5                A5  B5  C5  D5

 

 

 

 

 (7) index 중복 여부 점검 : verify_integrity

 

df_7, df_8 DataFrame에 'r2' index를 중복으로 포함시킨 후에 pd.concat() 을 적용해보겠습니다. verify_integrity=False (디폴트이므로 별도 입력 안해도 됨) 에서는 아무 에러 메시지 없이 위+아래로 잘 합쳐집니다 ('r2' index가 위+아래로 2번 중복해서 나타남).  반면에, verify_integrity=True 를 설정해주면 만약 index 중복이 있을 경우 'ValueError: Indexes have overlapping values: xxx' 에러 메시지가 뜨면서 합치기가 아예 안됩니다.

 

 

In [48]: df_7 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],

    ...: 'B': ['B0', 'B1', 'B2'],

    ...: 'C': ['C0', 'C1', 'C2'],

    ...: 'D': ['D0', 'D1', 'D2']},

    ...: index=['r0', 'r1', 'r2'])

    ...:


In [49]: df_8 = pd.DataFrame({'A': ['A2', 'A3', 'A4'],

    ...: 'B': ['B2', 'B3', 'B4'],

    ...: 'C': ['C2', 'C3', 'C4'],

    ...: 'D': ['D2', 'D3', 'D4']},

    ...: index=['r2', 'r3', 'r4'])


In [50]: df_7

Out[50]:

     A   B   C   D
r0  A0  B0  C0  D0
r1  A1  B1  C1  D1
r2  A2  B2  C2  D2


In [51]: df_8

Out[51]:

     A   B   C   D
r2  A2  B2  C2  D2
r3  A3  B3  C3  D3
r4  A4  B4  C4  D4

 

 

# concatenating DataFrames without overlap checking : verify_integrity=False

 

In [52]: df_78_F_verify_integrity = pd.concat([df_7, df_8],

    ...: verify_integrity=False) # default


In [53]: df_78_F_verify_integrity

Out[53]:

     A   B   C   D
r0  A0  B0  C0  D0
r1  A1  B1  C1  D1
r2  A2  B2  C2  D2
r2  A2  B2  C2  D2
r3  A3  B3  C3  D3
r4  A4  B4  C4  D4

 

 

# index overlap checking, using verify_integrity=True

 

In [54]: df_78_T_verify_integrity = pd.concat([df_7, df_8],

    ...: verify_integrity=True)

 

Traceback (most recent call last):

  File "<ipython-input-56-5512ad3b5016>", line 2, in <module>
    verify_integrity=True)

  File "C:\Anaconda3\lib\site-packages\pandas\tools\merge.py", line 845, in concat
    copy=copy)

  File "C:\Anaconda3\lib\site-packages\pandas\tools\merge.py", line 984, in __init__
    self.new_axes = self._get_new_axes()

  File "C:\Anaconda3\lib\site-packages\pandas\tools\merge.py", line 1073, in _get_new_axes
    new_axes[self.axis] = self._get_concat_axis()

  File "C:\Anaconda3\lib\site-packages\pandas\tools\merge.py", line 1132, in _get_concat_axis
    self._maybe_check_integrity(concat_axis)

  File "C:\Anaconda3\lib\site-packages\pandas\tools\merge.py", line 1141, in _maybe_check_integrity
    % str(overlap))

 

ValueError: Indexes have overlapping values: ['r2']

 

 

많은 도움이 되었기를 바랍니다.

 

도움이 되었다면 아래의 '공감 ~♡'를 꾹 눌러주세요. ^^

 

Posted by R Friend R_Friend

댓글을 달아 주세요

지난번 포스팅에서는 DataFrame 의 행과 열 기준으로 데이터 선택해서 가져오기 (indexing and selection)에 대해서 알아보았습니다.

 

index를 처음 만들기는 했는데요, 필요에 따라서 수정해야 할 필요가 생길 수도 있겠지요?

 

이번 포스팅에서는

 

 - (1) index 재설정하기 (reindex)

 

 - (2) reindex 과정에서 생기는 결측값 채우기
       (fill in missing values)

 

방법에 대해서 소개하겠습니다.

 

 

먼저, 필요한 library를 import 하고, dit와 index를 사용해서 간5행, 2열을 가진 간단한 DataFrame을 만들어보겠습니다.

 

 

##-- Make a new index and reindex the dataframe

 

In [1]: import numpy as np

   ...: import pandas as pd

   ...: from pandas import DataFrame

 

In [2]: idx = ['r0', 'r1', 'r2', 'r3', 'r4']

   ...:

   ...: df_1 = pd.DataFrame({

   ...: 'c1': np.arange(5),

   ...: 'c2': np.random.randn(5)},

   ...: index=idx)

 

In [3]: df_1

Out[3]:

    c1        c2
r0   0  1.182716
r1   1  0.244398
r2   2 -1.494202
r3   3  0.146152
r4   4 -0.352680

 

 

 

 

위 예에서 df_1 DataFrame의 행 index 가 ['r0', 'r1', 'r2', 'r3', 'r4'] 인데요, ['r3', 'r4']를 빼고 ['r5', 'r6']를 새로 추가하고 싶다고 해봅시다.  이때 사용하는 것이 'reindex' 입니다.

 

 

  (1-1) index 재설정하기 : reindex

 

 

##-- Make a new index and reindex the dataframe

 

In [4]: new_idx= ['r0', 'r1', 'r2', 'r5', 'r6']


In [5]: df_1.reindex(new_idx)

Out[5]:

     c1        c2
r0  0.0  1.182716
r1  1.0  0.244398
r2  2.0 -1.494202
r5  NaN       NaN
r6  NaN       NaN

 

 

이전에 없던 ['r5', 'r6'] index가 추가되자 'NaN' 값이 디폴트로 채워쳤습니다.  'NaN' 대신에 fill_value 파라미터를 사용해서 '0', 혹은 'missing', 'NA' 등으로 바꿔서 채워보겠습니다.

 

 

 

  (1-2) reindex 과정에서 생긴 결측값 채우기 (fill in missing values) : fill_value

 

 

##-- Fill in the missing values by passing a value to the keyword fill_value

 

In [8]: df_1.reindex(new_idx, fill_value=0)

Out[8]:

    c1        c2
r0   0  1.182716
r1   1  0.244398
r2   2 -1.494202
r5   0  0.000000
r6   0  0.000000

 

 

 

 

In [9]: df_1.reindex(new_idx, fill_value='missing')

Out[9]:

         c1        c2
r0        0   1.18272
r1        1  0.244398
r2        2   -1.4942
r5  missing   missing
r6  missing   missing

 

 

 

In [10]: df_1.reindex(new_idx, fill_value='NA')
Out[10]:

    c1        c2
r0   0   1.18272
r1   1  0.244398
r2   2   -1.4942
r5  NA        NA
r6  NA        NA

 

 

 


 

시계열 데이터 (TimeSeries Data)는 DataFrame의 index 만들 때 pd.date_range(date, periods, freq) 를 사용합니다. (시계열 데이터 처리, 분석은 나중에 따로 많이 포스팅하겠습니다.)

 

먼저, 시계열 데이터로 DataFrame 만들어보겠습니다.

 

 

In [11]: date_idx = pd.date_range('11/27/2016', periods=5, freq='D')


In [12]: date_idx

Out[12]:

DatetimeIndex(['2016-11-27', '2016-11-28', '2016-11-29', '2016-11-30',

'2016-12-01'],

dtype='datetime64[ns]', freq='D')


In [13]: df_2 = pd.DataFrame({"c1": [10, 20, 30, 40, 50]}, index=date_idx)


In [14]: df_2

Out[14]:

                c1

2016-11-27 10

2016-11-28 20

2016-11-29 30

2016-11-30 40

2016-12-01 50

 

 

 

 

위에서 만든 시계열 데이터 DataFrame 의 date 앞/뒤로 reindex 를 사용해서 날짜 몇 개를 새로 추가해보겠습니다.

 

  (2-1) 시계열 데이터 index 재설정 하기 (reindex of TimeSeries Data)

 

 

In [15]: date_idx_2 = pd.date_range('11/25/2016', periods=10, freq='D')


In [16]: df_2.reindex(date_idx_2)

Out[16]:

                 c1

2016-11-25 NaN

2016-11-26 NaN

2016-11-27 10.0

2016-11-28 20.0

2016-11-29 30.0

2016-11-30 40.0

2016-12-01 50.0

2016-12-02 NaN

2016-12-03 NaN

2016-12-04 NaN

 

 

 

 

  (2-2) 시계열 데이터 reindex 과정에서 생긴 결측값 채우기 : method='ffill', 'bfill'
         (fill in missing value of TimeSeries Data)

 

reindex 하면서 결측값을 채우는 방법으로 method='ffill'을 사용해서 결측값 직전의 값으로 이후 결측값을 채워보겠습니다.

 

 

In [17]: df_2.reindex(date_idx_2, method='ffill') # forward-propagation

Out[17]:

                   c1
2016-11-25   NaN
2016-11-26   NaN
2016-11-27  10.0
2016-11-28  20.0
2016-11-29  30.0
2016-11-30  40.0
2016-12-01  50.0
2016-12-02  50.0
2016-12-03  50.0
2016-12-04  50.0

 

 

 

 

이번에는 reindex 하면서 method='bfill' 을 사용해서 시간 뒷 순서의 결측값으로 이전 결측값을 채워보겠습니다.  

 

 

In [18]: df_2.reindex(date_idx_2, method='bfill') # back-propagation

Out[18]:

                  c1
2016-11-25  10.0
2016-11-26  10.0
2016-11-27  10.0
2016-11-28  20.0
2016-11-29  30.0
2016-11-30  40.0
2016-12-01  50.0
2016-12-02   NaN
2016-12-03   NaN
2016-12-04   NaN

 

 

많은 도움 되었기를 바랍니다.

 

Posted by R Friend R_Friend

댓글을 달아 주세요

  1. 김민지 2017.01.06 09:46  댓글주소  수정/삭제  댓글쓰기

    bfill과 ffill둘다 동시에 쓰고 싶은 경우에는 어떻게하나요?

    • R Friend R_Friend 2017.01.06 10:22 신고  댓글주소  수정/삭제

      분석 목적, 업의 특성에 따라 현업의 판단을 반영해서 무엇을 쓸지 결정하면 됩니다.

      저는 보통 시계열데이터 분석할때 ffill 로 먼저 채우고, 데이터셋의 윗부분에 안채워자는 몇개 원소에 대해서는 bfill로 마저 채우는 식으로 해요.

      ffill로 한번 돌리고,
      그 다음줄에 bfill 로 한번 더 돌리면 됩니다.

이번 포스팅에서는 Python pandas에서 가장 중요하게 사용되는 Data 구조인

 

 - (1) DataFrame을 만들어보고,

 

 - (2) 다양한 Attributes 를 조회

 

하는 방법에 대해서 알아보겠습니다.

 

 

먼저 필요한 Library 들을 importing 하겠습니다.

 

 

In [1]: import numpy as np

   ...: import pandas as pd

   ...: from pandas import DataFrame as df

 

 

 

 

  (1) pandas DataFrame 만들기

 

pd.DataFrame() 에서 사용하는 Paraeter 들에는 (1) data, (2) index, (3) columns, (4) dtype, (5) copy 의 5가지가 있습니다.

 

(1-1) data : numpy ndarray, dict, DataFrame 등의 data source

(1-2) index : 행(row) 이름, 만약 명기하지 않으면 np.arange(n)이 자동으로 할당 됨

(1-3) column : 열(column) 이름, 만약 명기하지 않으면 역시 np.arnage(n)이 자동으로 할당 됨

(1-4) dtype : 데이터 형태(type), 만약 지정하지 않으면 Python이 자동으로 추정해서 넣어줌

(1-5) copy : 입력 데이터를 복사할지 지정. 디폴트는 False 임. (복사할 거 아니면 메모리 관리 차원에서 디폴트인 False 설정 사용하면 됨)

 

 

3행 4열짜리 간단한 DataFrame을 만들어보겠습니다.  data  란에 input data 지정은 필수로 해줘야 하구요, 나머지 index, columns, dtype, copy는 별도로 명기를 안해줘도 디폴트 세팅이 적용되어서 DataFrame이 생성이 되긴 합니다.

 

 

In [2]: df_1 = df(data=np.arange(12).reshape(3, 4),

   ...: index=['r0', 'r1', 'r2'], # Will default to np.arange(n) if no indexing

   ...: columns=['c0', 'c1', 'c2', 'c3'],

   ...: dtype='int', # Data type to force, otherwise infer

   ...: copy=False) # Copy data from inputs

 

In [3]: df_1

Out[3]: 
    c0  c1  c2  c3
r0   0   1   2   3
r1   4   5   6   7
r2   8   9  10  11

 

 

 

 

  (2) DataFrame 의 Attributes 조회하기

 

 

다음으로 DataFrame의 Attributes을 조회하는 방법을 소개하겠습니다.

참고로, 아래 Attributes의 끝에는 괄호 ()를 붙이지 않으니 헷갈리지 않도록 조심하세요.

 

 

(2-1) T : 행과 열 전치 (transpose)

 

 

In [5]: df_1.T # Transpose index and columns

Out[5]:

c3   3   7  11
c0   0   4   8
c1   1   5   9
c2   2   6  10
c3   3   7  11 

 

 

 

(2-2) axes : 행과 열 이름을 리스트로 반환

 

 

In [6]: df_1.axes

Out[6]:

[Index(['r0', 'r1', 'r2'], dtype='object'),

Index(['c0', 'c1', 'c2', 'c3'], dtype='object')]

 

 

 

 

(2-3) dtypes : 데이터 형태 반환

 

 

In [7]: df_1.dtypes # Return the dtypes in this object

Out[7]:

c0 int32

c1 int32

c2 int32

c3 int32

dtype: object

 

 

 

 

(2-4) shape : 행과 열의 개수(차원)을 튜플로 반환

 

 

In [22]: df_1.shape # Return a tuple representing the dimensionality of the DataFrame

Out[22]: (3, 4)

 

 

 

 

(2-5) size : NDFrame의 원소의 개수를 반환

 

 

In [23]: df_1.size # number of elements in the NDFrame

Out[23]: 12

 

 

 

 

(2-6) values : NDFrame의 원소를 numpy 형태로 반환

 

 

In [24]: df_1.values # Numpy representation of NDFrame

Out[24]:

array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

 

 

 

다음번 포스팅에서는 DataFrame에서 indexing 하는 방법을 소개하겠습니다.

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요