지난번 포스팅에서는 차원 축소란 무엇이고 왜 하는지(https://rfriend.tistory.com/736)와 투영(projection) 방법을 사용하는 주성분 분석(PCA)을 통한 차원 축소 (https://rfriend.tistory.com/751) 에 대해서 소개하였습니다. 

 

이번 포스팅에서는 manifold learning approche 에 해당하는 비지도학습, 비선형 차원축소 방법으로서 LLE (Locally Linear Embedding) 알고리즘을 설명하겠습니다. 

 

(1) 매니폴드 학습 (Manifold Learning)

(2) Locally Linear Embedding (LLE) 알고리즘

(3) sklearn 을 사용한 LLE 실습

 

 

(1) 매니폴드 학습 (Maniflod Learning)

 

먼저 매니폴드 학습(Manifold Learning)에 대해서 간략하게 살펴보고 넘어가겠습니다.

매니폴드란 각 점 근처의 유클리드 공간과 국부적으로 유사한 위상 공간을 말합니다. (A manifold is a topological space that locally resembles Eucludian space near each point.) [1]  d-차원의 매니폴드는 n-차원 공간 (이때 d < n) 의 부분으로서 d-차원의 초평면(d-dimensional hyperplane)을 국부적으로 닮았습니다. 아래의 3차원 공간의 Swiss Roll 에서 데이터의 구성 특성과 속성을 잘 간직한 2차원의 평면(plane)을 생각해볼 수 있는데요, Swiss Roll 을 마치 돌돌 말린 종이(매니폴드)를 펼쳐서 2차원 공간으로 표현해본 것이 오른쪽 그림입니다. 

manifold geometry: unroll the swiss roll

매니폴드 학습(Manifold Learning)이란 데이터에 존재하는 매니폴드를 모델링하여 차원을 축소하는 기법을 말합니다. 매니폴드 학습은 대부분 실세계의 고차원 데이터가 훨씬 저차원의 매니폴드에 가깝게 놓여있다는 매니폴드 가정(Manifold Assumption) 혹은 매니폴드 가설(Maniflod Hypothesis)에 기반하고 있습니다. [2] 

 

위의 비선형인 3차원 Swiss Roll 데이터를 선형 투영 기반의 주성분 분석(PCA, Principal Component Analysis)이나 다차원척도법(MDS, Multi-Dimensional Scaling) 로 2차원으로 차원을 축소하려고 하면 데이터 내 존재하는 매너폴드를 학습하지 못하고 데이터가 뭉개지고 겹쳐지게 됩니다. 

 

매니폴드 가설은 분류나 회귀모형과 같은 지도학습을 할 때 고차원의 데이터를 저차원의 매니폴드 공간으로 재표현했을 때 더 간단하고 성과가 좋을 것이라는 묵시적인 또 다른 가설과 종종 같이 가기도 합니다. 하지만 이는 항상 그런 것은 아니며, 데이터셋이 어떻게 구성되어 있느냐에 전적으로 의존합니다. 

 

 

 

(2) Locally Linear Embedding (LLE) 알고리즘

 

LLE 알고리즘은 "Nonlinear Dimensionality Reduction by Locally Linear Embedding (2000)" [3] 논문에서 주요 내용을 간추려서 소개하겠습니다. 

 

LLE 알고리즘은 주성분분석이나(PCA) 다차원척도법(MDS)와는 달리 광범위하게 흩어져있는 데이터 점들 간의 쌍을 이룬 거리를 추정할 필요가 없습니다. LLE는 국소적인 선형 적합으로 부터 전역적인 비선형 구조를 복원합니다 (LLE revocers global nonlinear structure from locally linear fits.). 

 

논문에서 소개한 LLE 3단계 절차(steps of locally linear embedding)는 꽤 간단합니다. 

    (1단계) 각 데이터 점의 이웃을 선택 (Select neighbors)

    (2단계) 이웃으로부터 선형적으로 가장 잘 재구성하는 가중치를 계산 (Reconstruct with linear weights)

    (3단계) 가중치를 사용해 저차원의 임베딩 좌표로 매핑 (Map to embedded coordinates)

 

Steps of locally linear embedding (source: Sam T. Roweis and Lawrence K. Saul)

 

1단계에서 각 데이터 점별로 이웃을 할당할 때는 데이터 점들 간의 거리를 계산하는데요, 가령 K 최근접이웃(K nearest neighbors) 기법을 사용할 수 있습니다. 

 

 

2단계에서 각 데이터 점들의 이웃들로부터 각 점을 가장 잘 재구성하는 선형 회귀계수(linear coefficients, linear weights)를 계산해서 국소적인 기하 특성을 간직한 매너폴드를 학습합니다.  아래는 재구성 에러를 측정하는 비용함수인데요, 원래의 데이터점과 이웃들로 부터 계산한 선형 모형으로 재구성한 값과의 거리를 제곱하여 모두 더한 값입니다. 

the cost function of reconstruction

위의 비용함수를 최소로 하는 가중치 벡터 Wij 를 계산하게 되는데요, 이때 2가지 제약조건(constraints)이 있습니다. 

  - (a) 각 데이터 점은 단지 그들의 이웃들로 부터만 재구성됩니다.

          (만약 Xj 가 Xi의 이웃에 속하지 않는 데이터점이면 가중치 Wij = 0 이 됩니다.)

  - (b) 가중치 행렬 행의 합은 1이 됩니다. (sum(Wij) = 1) 

 

위의 2가지 제약조건을 만족하면서 비용함수를 최소로 하는 가중치 Wij 를 구하면 특정 데이터 점에 대해 회전(rotations), 스케일 조정(recalings), 그리고 해당 데이터 점과 인접한 데이터 점의 변환(translations) 에 있어 대칭(symmetry)을 따릅니다. 이 대칭에 의해서 (특정 참조 틀에 의존하는 방법과는 달리) LLE의 재구성 가중치는 각 이웃 데이터들에 내재하는 고유한 기하학적 특성(저차원의 매너폴드)을 모델링할 수 있게됩니다. 

 

 

3단계에서는 고차원(D) 벡터의 각 데이터 점 Xi 를 위의 2단계에서 계산한 가중치를 사용하여 매니폴드 위에 전역적인 내부 좌표를 표현하는 저차원(d) 벡터 Yi 로 매핑합니다.  이것은 아래의 임베팅 비용 함수를 최소로 하는 저차원 좌표 Yi (d-mimensional coordinates) 를 선택하는 것으로 수행됩니다. 

the cost function of embedding

임베팅 비용 함수는 이전의 선형 가중치 비용함수와 마찬가지로 국소 선형 재구성 오차를 기반으로 합니다. 하지만 여기서 우리는 Yi 좌표를 최적화하는 동안 선형 가중치 Wij 를 고정합니다. 임베팅 비용 함수는 희소 N x N 고유값 문제(a sparse N X N eignevalue problem)를 풀어서 최소화할 수 있습니다. 이 선형대수 문제를 풀면 하단의 d차원의 0이 아닌 고객벡터는 원점을 중심으로 정렬된 직교 좌표 집합을 제공합니다. 

 

LLE 알고리즘은 희소 행렬 알고리듬(sparse matrix algorithms)을 활용하기 위해 구현될 때 비선형 차원축소 기법 중 하나인 Isomap 보다 더 빠른 최적화와 많은 문제에 대해 더 나은 결과를 얻을 수 있는 몇 가지 장점이 있습니다. [4]

 

아래에 3차원 Swiss Roll 데이터를 여러가지 비선형 차원 축소 기법을 사용해서 적용한 결과인데요 [5], LLE 는 수행 시간이 짧은 장점이 있지만 매니폴드가 약간 찌그러져 있는 한계가 있는 반면에, Isomap과 Hessian LLE 는 국지적인 데이터 형상과 관계를 잘 재표현한 저차원 매니폴드를 잘 잡아내지만 수행 시간이 LLE 대비 굉장히 오래걸리는 단점이 있습니다. 

 

 

 

(3) sklearn 을 사용한 LLE 실습

 

먼저 sklearn 모듈의 make_swiss_roll 메소드를 사용해서 데이터 점 1,000개를 가지는 3차원의 Swiss Roll 샘플 데이터셋을 만들어보겠습니다. X 는 데이터 점이고, t는 매니폴드 내 점의 주 차원에 따른 샘플의 단변량 위치입니다. 

 

## Swiss Roll sample dataset
## ref: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html
from sklearn.datasets import make_swiss_roll

X, t = make_swiss_roll(n_samples=1000, noise=0.1, random_state=1004)


## X: The points.
X[:5]
# array([[ 1.8743272 , 18.2196214 , -4.75535504],
#        [12.43382272, 13.9545544 ,  2.91609936],
#        [ 8.02375359, 14.23271056, -8.67338106],
#        [12.23095692,  2.37167446,  3.64973091],
#        [-8.44058318, 15.47560926, -5.46533069]])


## t: The univariate position of the sample according to the main dimension of the points in the manifold.
t[:10]
# array([ 5.07949952, 12.78467229, 11.74798863, 12.85471755,  9.99011767,
#         5.47092408,  6.89550966,  6.99567358, 10.51333994, 10.43425738])

 

 

 

다음으로 sklearn 모듈에 있는 LocallyLinearEmbedding 메소드를 사용해서 위에서 생성한 Swiss Roll 데이터에 대해 LLE 알고리즘을 적용하여 2차원 데이터로 변환을 해보겠습니다. 

 

## Manifold Learning
from sklearn.manifold import LocallyLinearEmbedding

lle = LocallyLinearEmbedding(n_components=2, n_neighbors=10)

X_reduced_lle = lle.fit_transform(X)

X_reduced_lle[:10]
# array([[-0.0442308 ,  0.0634603 ],
#        [ 0.04241534,  0.01060574],
#        [ 0.02712308,  0.01121903],
#        [ 0.04396569, -0.01883799],
#        [ 0.00275144,  0.01550906],
#        [-0.04178513,  0.05415933],
#        [-0.03073913,  0.023496  ],
#        [-0.02880368, -0.0230327 ],
#        [ 0.0109238 , -0.02566617],
#        [ 0.00979253, -0.02309815]])

 

 

마지막으로 matplotlib 모듈을 사용해서 2차원 평면에 위에서 LLE 로 매핑한 데이터를 시각화해보겠습니다. 색깔을 t 로 구분하였습니다. 

 

## 2D Scatter Plot
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (8, 8)
plt.scatter(X_reduced_lle[:, 0], X_reduced_lle[:, 1], c=t, cmap=plt.cm.hot)
plt.title("Unrolled Swiss Roll by LLE", fontsize=20)
plt.xlabel("$y_1$", fontsize=14)
plt.ylabel("$y_2$", fontsize=14)
plt.axis([-0.065, 0.055, -0.1, 0.12])
plt.grid(True)

plt.show()

 

 

 

[Reference]

[1] Wikipedia, "Manifold", https://en.wikipedia.org/wiki/Manifold

[2] Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn & Tensorflow"

[3] Sam T. Roweis, Lawrence K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding"

[4] Wikipedia, "Nonlinear Dimensionality Reduction",  https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction

[5] Nik Melchior, "Manifold Learning, Isomap and LLE":  https://www.cs.cmu.edu/~efros/courses/AP06/presentations/melchior_isomap_demo.pdf 

 

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!  :-)

728x90
반응형
Posted by Rfriend
,

지난 포스팅에서는 차원 축소란 무엇이고 왜 하는지, 무슨 방법이 있는지에 대해서 알아보았습니다.

(https://rfriend.tistory.com/736)  차원축소하는 방법에는 크게 Projection-based dimensionality reduction, Manifold Learning 의 두가지 방법이 있다고 했습니다. 

 

이번 포스팅에서는 투사를 통한 차원축소 방법(dimensionality reduction via projection approach) 으로서 주성분분석을 통한 차원축소(dimensionality reduction using PCA, Principal Component Analysis)에 대해서 소개하겠습니다. 

 

(1) 주성분분석(PCA, Principal Component Analysis)을 통한 차원 축소

(2) 특이값 분해 (SVD, Singular Value Decomposition)을 통한 차원 축소

 

 

 

(1) 주성분 분석(PCA, Principal Component Analysis)을 통한 차원 축소

 

주성분 분석(PCA)의 핵심 아이디어만 간략하게 소개하자면요, 피쳐 공간(Feature Space)에서 데이터의 분산을 최대로 잡아낼 수 있는 축을 제1 주성분 축으로 잡고, 이 제1 주성분 축과 직교(orthogonal)하는 축을 제2 주성분 축으로 잡고, ..., 이렇게 최대 변수의 개수 p 개 만큼 주성분 축을 잡아줍니다. (물론, 차원축소를 하는 목적이면 주성분 개수 m 이 변수 개수 p 보다는 작아야 겠지요). 그리고 축을 회전시켜주면 돼요. 

 

아래의 예시 도면을 보면 파란색 제 1 주성분 축 (1st principal component axis)이 데이터 분산을 가장 많이 설명하고 있는 것을 알 수 있습니다. 빨간색 점선의 제 2 주성분 축(2nd principal component axis) 은 제1 주성분 축과 직교하구요. 

 

 

Principal Component Analysis

 

이제 Python 을 가지고 실습을 해볼께요. 

(R로 주성분 분석 하는 것은 https://rfriend.tistory.com/61 를 참고하세요.)

 

먼저 예제로 사용할 iris 데이터셋을 가져오겠습니다. sepal_length, sepal_width, petal_length, petal_width 의 4개 변수를 가진 데이터셋인데요, 4개 변수 간 상관관계 분석을 해보니 상관계수가 0.8 이상으로 꽤 높게 나온 게 있네요. 주성분분석으로 차원축소 해보면 이쁘게 나올거 같아요. 

 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

## loading IRIS dataset
from sklearn.datasets import load_iris
data = load_iris()


data['data'][:10]
# array([[5.1, 3.5, 1.4, 0.2],
#        [4.9, 3. , 1.4, 0.2],
#        [4.7, 3.2, 1.3, 0.2],
#        [4.6, 3.1, 1.5, 0.2],
#        [5. , 3.6, 1.4, 0.2],
#        [5.4, 3.9, 1.7, 0.4],
#        [4.6, 3.4, 1.4, 0.3],
#        [5. , 3.4, 1.5, 0.2],
#        [4.4, 2.9, 1.4, 0.2],
#        [4.9, 3.1, 1.5, 0.1]])


## converting into pandas DataFrame
iris_df = pd.DataFrame(
    data['data'], 
    columns=['sepal_length', 'sepal_width', 
             'petal_length', 'petal_width'])

iris_df.head()
# 	sepal_length	sepal_width	petal_length	petal_width
# 0	5.1	3.5	1.4	0.2
# 1	4.9	3.0	1.4	0.2
# 2	4.7	3.2	1.3	0.2
# 3	4.6	3.1	1.5	0.2
# 4	5.0	3.6	1.4	0.2


## correlation matrix
iris_df.corr()
# 	sepal_length	sepal_width	petal_length	petal_width
# sepal_length	1.000000	-0.117570	0.871754	0.817941
# sepal_width	-0.117570	1.000000	-0.428440	-0.366126
# petal_length	0.871754	-0.428440	1.000000	0.962865
# petal_width	0.817941	-0.366126	0.962865	1.000000

 

 

주성분 분석은 비지도 학습 (Unsupervised Learning) 이다보니 정답이라는게 없습니다. 그래서 분석가가 주성분의 개수를 지정해주어야 하는데요, 주성분의 개수가 적을 수록 차원 축소가 많이 되는 반면 정보 손실(information loss)가 발생하게 되며, 반면 주성분 개수가 많을 수록 정보 손실은 적겠지만 차원 축소하는 의미가 퇴색됩니다. 그래서 적절한 주성분 개수를 선택(hot to decide the number of principal components)하는게 중요한데요, 주성분의 개수별로 설명 가능한 분산의 비율 (percentage of explained variance by principal components) 을 많이 사용합니다. 

 

아래의 예에서는 첫번째 주성분이 분산의 92.4%를 설명하고, 두번째 주성분이 분산의 5.3%를 설명하므로, 주성분 1 & 2 까지 사용하면 전체 분산의 97.7%를 설명할 수 있게 됩니다. (즉, 원래 4개 변수를 2개의 차원으로 축소하더라도 분산의 97.7%를 설명 가능하다는 뜻) 

 

참고로, 만약 주성분분석 결과를 지도학습(가령, 회귀분석)의 설명변수 인풋으로 사용한다면, cross validation을 사용해서 주성분 개수별로 모델의 성능을 평가(가령, 회귀분석의 경우 MSE)해서, 모델 성능지표가 가장 좋은 주성분 개수를 선택하는 것도 좋은 방법입니다. 

 

## how to decide the number of Principal Components
from sklearn.decomposition import PCA

pca = PCA(random_state=1004)
pca.fit_transform(iris_df)


## percentage of variance explained
print(pca.explained_variance_ratio_)
# [0.92461872 0.05306648 0.01710261 0.00521218]


## Principal 1 & 2 explain about 97.8% of variance
plt.rcParams['figure.figsize'] = (7, 7)
plt.plot(range(1, iris_df.shape[1]+1), pca.explained_variance_ratio_)
plt.xlabel("number of Principal Components", fontsize=12)
plt.ylabel("% of Variance Explained", fontsize=12)
plt.show()

Explained Variance by Principal Components

 

 

이제 주성분 개수를 2개로 지정(n_components=2)해서 주성분 분석을 실행해보겠습니다. Python의 sklearn 모듈의 decomposition.PCA 메소드를 사용하겠습니다. 

 

## Dimensionality Reduction with n_components=2
pca = PCA(n_components=2, random_state=1004)
iris_pca = pca.fit_transform(iris_df)


iris_pca[:10]
# array([[-2.68412563,  0.31939725],
#        [-2.71414169, -0.17700123],
#        [-2.88899057, -0.14494943],
#        [-2.74534286, -0.31829898],
#        [-2.72871654,  0.32675451],
#        [-2.28085963,  0.74133045],
#        [-2.82053775, -0.08946138],
#        [-2.62614497,  0.16338496],
#        [-2.88638273, -0.57831175],
#        [-2.6727558 , -0.11377425]])

 

 

 

위에서 실행한 주성분분석 결과를 가지고 시각화를 해보겠습니다. 4개 변수를 2개의 차원으로 축소를 했기 때문에 2차원의 산점도로 시각화를 할 수 있습니다. 이때 iris 데이터셋의 target 속성정보를 이용해서 붓꽃의 품종별로 색깔과 모양을 달리해서 산점도로 시각화해보겠습니다. 

 

## Visualization

## target
data['target'][:5]
# array([0, 0, 0, 0, 0])


## mapping target name using numpy vectorization
species_map_dict = {
    0: 'setosa', 
    1: 'versicolor', 
    2: 'virginica'
}

iris_pca_df = pd.DataFrame({
    'pc_1': iris_pca[:, 0], 
    'pc_2': iris_pca[:, 1], 
    'species': np.vectorize(species_map_dict.get)(data['target']) # numpy broadcasting
})


iris_pca_df.head()
# pc_1	pc_2	species
# 0	-2.684126	0.319397	setosa
# 1	-2.714142	-0.177001	setosa
# 2	-2.888991	-0.144949	setosa
# 3	-2.745343	-0.318299	setosa
# 4	-2.728717	0.326755	setosa


import seaborn as sns
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (7, 7)
sns.scatterplot(
    x='pc_1', 
    y='pc_2',
    hue='species', 
    style='species',
    s=100,
    data=iris_pca_df
)

plt.title('PCA result of IRIS dataset')
plt.xlabel('Principal Component 1', fontsize=14)
plt.ylabel('Principal Component 2', fontsize=14)
plt.show()

PCA result of iris dataset

 

 

 

(2) 특이값 분해 (SVD, Singular Value Decomposition)을 통한 차원 축소

 

선형대수의 특이값 분해의 결과로 나오는 U, sigma, V 에서 V 가 주성분 분석의 주성분에 해당합니다.  

특이값 분해(SVD, Singular Value Decomposition)에 대한 이론적인 소개는 https://rfriend.tistory.com/185 를 참고하세요. 

 

numpy 모듈의 linalg.svd 메소드를 사용하여 특이값 분해를 하려고 할 때 먼저 데이터 표준화(standardization)을 수작업으로 진행해 줍니다. (sklearn 으로 주성분분석을 할 때 sklearn 모듈이 내부적으로 알아서 표준화해서 진행해줌). 

 

## Standardization first
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(data['data'])


## PCA assumes that the dataset is centered around the origin.
X_centered = data['data'] - data['data'].mean(axis=0)
X_centered[:5]
# array([[-0.74333333,  0.44266667, -2.358     , -0.99933333],
#        [-0.94333333, -0.05733333, -2.358     , -0.99933333],
#        [-1.14333333,  0.14266667, -2.458     , -0.99933333],
#        [-1.24333333,  0.04266667, -2.258     , -0.99933333],
#        [-0.84333333,  0.54266667, -2.358     , -0.99933333]])

 

 

웨에서 표준화한 데이터를 numpy 모듈의 linalg.svd 메소드를 사용하여 특이값 분해를 해준 후에, V 를 transpose (T) 해주어서 첫번째와 두번째 열의 값을 가져오면 제1 주성분, 제2 주성분을 얻을 수 있습니다. 

 

## standard matrix factorization using SVD
U, s, V = np.linalg.svd(X_scaled.T)


## V contains all the principal components
pc_1 = V.T[:, 0]
pc_2 = V.T[:, 1]


## check pc_1, pc_2
pc_1[:10]
# array([0.10823953, 0.09945776, 0.1129963 , 0.1098971 , 0.11422046,
#        0.099203  , 0.11681027, 0.10671702, 0.11158214, 0.10439809])


pc_2[:10]
# array([-0.0409958 ,  0.05757315,  0.02920003,  0.05101939, -0.0552418 ,
#        -0.12718049, -0.00406897, -0.01905755,  0.09525253,  0.04005525])

 

 

 

위에서 특이값분해(SVD)로 구한 제1 주성분, 제2 주성분을 가지고 산점도를 그려보겠습니다. 이때 iris 의 target 별로 색깔과 모양을 달리해서 시각화를 해보겠습니다. 

 

## Visualization

iris_svd_df = pd.DataFrame({
    'pc_1': pc_1, 
    'pc_2': pc_2, 
    'species': np.vectorize(species_map_dict.get)(data['target']) # numpy broadcasting
})


import seaborn as sns
import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = (7, 7)
sns.scatterplot(
    x='pc_1', 
    y='pc_2',
    hue='species', 
    style='species',
    s=100,
    data=iris_svd_df
)

plt.title('SVD result of IRIS dataset')
plt.xlabel('Principal Component 1', fontsize=14)
plt.ylabel('Principal Component 2', fontsize=14)
plt.show()

dimensionality reduction by SVD

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요. 

 

728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 정답 레이블 Y는 없고 오직 설명변수 X 만을 사용해서 데이터 내 관계, 패턴, 구조를 탐색하는데 사용하는 비지도학습 중에서 차원 축소 (Dimensionality Reduction) 에 대한 이론적인 부분을 알아보겠습니다. (Python 코딩은 다음번 포스팅부터 해볼께요.)

 

1. 차원 축소란 무엇인가? (What is Dimensionality Reduction?)

2. 왜 차원 축소가 필요한가? (Why is Dimensionality Reduction?) 

3. 차원 축소의 단점은? (Pitfall of Dimensionality Reduction)

4. 차원 축소하는 방법은? (How to do Dimensionality Reduction?)

 

 

 

1. 차원 축소란 무엇인가? (What is Dimensionality Reduction?)

 

차원 축소 (Dimensionality Reduction, 또는 Dimension Reduction) 는 저차원 표현(low-dimensional representation)이 고차원 원본 데이터의 의미 있는 특성을 이상적으로 원래의 차원에 가깝게 유지할 수 있도록 고차원 공간에서 저차원 공간으로 데이터를 변환(the transformation of data from a high-dimensional space into a low-dimensional space)하는 것을 말합니다.[wikipedia, 1]

차원 축소를 하게 되면 원본 데이터로부터 일부 정보 손실 (information loss)이 발생하는데요, 원본 데이터로부터의 정보 손실을 최소화하면서 저차원으로 얼마나 잘 재표현(representation)할 수 있느냐가 관건이 되겠습니다. 

 

 

[ 차원 축소 (Dimensionality Reduction) vs. 군집 분석 (Clustering) ]

dimensionality reduction vs. clustering

 

차원 축소 (Dimensionality Reduction)와 군집분석 (Clustering) 모두 정답 Label Y 가 필요없이 특성 변수(features) 만을 가지고 데이터의 구조와 특성을 파악하는 비지도학습(Unsupervised Learning) 에 속합니다. 

 

군집분석 (Clustering) 은 관측치, 객체 간의 유사성(similarity)을 측정해서 유사한 관측치, 객체끼리 그룹을 만드는 분석 기법을 말합니다. 반면에 차원 축소 (Dimensionality Reduction) 는 특성 변수(features, variables)를 대상으로 변수 간 상관성에 기초해서 고차원에서 저차원 공간으로 재표현하는 변수 변환을 말합니다. 

 

 

 

2. 왜 차원 축소가 필요한가? (Why is Dimensionality Reduction?) 

 

차원 축소를 하는 이유, 활용 목적에는 여러가지가 있는데요, 먼저 기계학습 측면에서는 차원 축소가 차원의 저주 (Curse of Dimensionality)를 피하고, 과적합 (Overfitting) 을 방지하는데 효과적입니다. 

 

차원의 저주(Curse of Dimensionality) 는 일상적 경험의 3차원 물리적 공간 등 저차원적 환경에서 일어나지 않는 고차원적 공간에서 데이터를 분석하고 정리할 때 발생하는 다양한 현상을 말합니다. 이 표현은 Richard E. Bellman 이 동적 프로그래밍의 문제를 고려할 때 처음 사용하였습니다. 차원 저주 현상은 수치 분석, 샘플링, 조합론, 기계 학습, 데이터 마이닝 및 데이터베이스와 같은 영역에서 발생합니다. 이러한 문제의 공통 주제는 차원성이 증가하면 공간의 부피가 너무 빠르게 증가하여 사용 가능한 데이터가 희박해진다는 것입니다. 신뢰할 수 있는 결과를 얻기 위해 필요한 데이터의 양은 차원성에 따라 기하급수적으로 증가하는 경우가 많습니다. 또한 데이터를 구성하고 검색하는 것은 종종 객체가 유사한 속성을 가진 그룹을 형성하는 영역을 감지하는 데 의존합니다. 그러나 고차원 데이터에서는 모든 객체가 여러 면에서 희박하고 유사하지 않아 일반적인 데이터 구성 전략이 효율적이지 못하게 됩니다. [wikipedia, 2]

 

통계학의 선형회귀모형에는 독립변수(independent variable, 혹은 설명변수 explanatory variable, 혹은 예측변수 predictor variable) 들 간의 독립을 가정합니다. (독립변수라는 이름 자체에 변수 간 독립을 명시함. ㅎㅎ)  그런데 모델링에 인풋으로 사용하는 설명변수 간 다중공선성(multicolleniarity)이 존재할 경우 추정된 회귀계수의 분산이 커져서 모델이 불안정하고 과적합에 빠지는 위험이 있습니다. 독립변수간 다중공선성(multicolleniarity)을 해결하는 몇가지 방법 중의 하나가 독립변수간 상관성에 기반해서 차원을 축소한 후에 회귀모형을 적합하는 방법입니다. 

 

탐색적 데이터 분석을 하는 단계에서 변수 간 관계를 파악하기 위해서 산점도(scatter plot)으로 시각화(visualization) 해서 보면 효과적인데요, 만약 특성변수(features)의 개수가 여러개일 경우에는 2개 특성변수 간 조합의 개수가 기하급수적으로 늘어나기 때문에 모든 조합을 시각화해서 살펴보는 것에 어려움이 있습니다.  이럴 경우, 차원축소를 해서 소수의 차원에 대해서 시각화를 하면 많은 양의 정보를 효과적으로 시각화해서 데이터 특성을 탐색해볼 수 있습니다. 

 

이밖에도 차원 축소를 하면 이후의 데이터 처리, 분석 시에 연산 속도를 향상(performance incease)시킬 수 있습니다. 그리고 데이터를 압축(data compression)하여 데이터 저장이나 전송 효율을 높이는데도 차원 축소를 사용할 수 있습니다. 

 

 

 

3. 차원 축소의 단점은? (Pitfall of Dimensionality Reduction)

 

차원 축소를 하게 되면 원본 데이터 대비 정도의 차이일 뿐 필연적으로 정보 손실 (Information Loss) 이 발생합니다. 그리고 원본 데이터 대비 차원 축소한 데이터를 해석하는데도 어려움이 (hard to interprete) 생깁니다. 또한 차원 축소를 위한 데이터 변환 절차가 추가되므로 데이터 파이프 라인 (data pipeline) 이 복잡해지는 단점도 있습니다. 

 

 

 

4. 차원 축소하는 방법은? (How to do Dimensionality Reduction?)

 

차원 축소하는 방법은 크게 (Linear) Projection(Non-linear) Manifold Learning 의 2가지로 나눌 수 있습니다. 

 

(4-1) Projection-based Dimensionality Reduction: 주성분분석 (PCA, Principal Component Analysis), 특이값 분해 (Singular Value Decomposition), 요인분석 (Factor Analysis)

 

(4-2) Manifold Learning: LLE (Locally-Linear Embedding), Isomap, Kernel Principal Component Analysis, Autoencoders, SOM(Self-Organizing Map) 

 

dimensionality reduction methods and algorithms

 

 

다음번 포스팅에서는 linear projection 방법 중에서 Python 의 Sklearn 모듈을 활용하여 주성분분석 (PCA, Principal Component Analysis)을 하는 방법을 소개하겠습니다. 

 

 

[ Reference ] 

[1] Wikipedia - Dimensionality Reduction: https://en.wikipedia.org/wiki/Dimensionality_reduction

[2] Wikipedia - Curse of Dimensionality: https://en.wikipedia.org/wiki/Curse_of_dimensionality

[3] Wikipedia - Nonlinear Dimensionality Reduction: https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction

 

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!  :-)

 

728x90
반응형
Posted by Rfriend
,