데이터 변환 방법으로서

(1) 표준화

(2) 정규분포화

(3) 범주화

  - (3-1) 이산형화(discretization)

  - (3-2) 이항변수화(binarization)

(4) 개수 축소

(5) 차원 축소

  - 주성분분석

  - 요인분석 

(6) 시그널 데이터 압축

 

중에서 우선 (3-1) 이산형화(discretization)에 대해서 알아보겠습니다. 

 

분할표(contingency table)를 구하거나 카이제곱 검정을 할 때 범주형 변수를 대상으로 집단 간 독립성 검정을 하게 됩니다.  이처럼 분석기법에 따라서 연속형 변수를 범주형 변수로 변환을 한 이후에야 분석이 가능한 경우가 있습니다. 

 

혹은, 회귀분석을 한다고 했을 때 명목형, 범주형 자료에 대해서 가변수(dummy variable) 화 해서 분석을 진행해야 할 때도 있습니다.  가령 요일효과를 모형에 적합시키고자 한다면 요일 변수를 월요일 여부(mon_yn), 화요일 여부(tue_yn), ... , 토요일 여부(sat_yn) 등과 같이 1, 0 으로 코드화된 가변수로 변환해야 하는 경우도 있습니다.

 

이번 포스팅에서는 첫번째 경우의 (1) 이산형화, 두번째 경우의 (2) 이항변수화에 대해서 R에서는 어떻게 처리하는지 알아보도록 하겠습니다.

 

 

 R 데이터 변환 (3) 범주화 : 이산형화(discretization)

 

 

[ 데이터 변환 구성 ] 

 

 

 

 

(3-1) 이산형화 (Discretization)

 

연속형 변수를 범주형 변수로 변환하는 작업을 이산형화라고 합니다.  이산형화 변화 시에는 '몇 개의 범주로 나눌지?''구분선(cutting line)을 무슨 기준으로, 어디로 할지?'가 중요한 질문이 되겠습니다.

 

두 질문에 대한 학술적인 단 하나의 답안은 없습니다.  두 질문에 대해 공통적으로 분석/활용의 목적이 무엇이냐와 Biz. Domain Konwledge가 충분히 반영이 되어서 의사결정을 해야만 하고, 운영 과정상의 시행착오와 경험을 통한 긍정/부정적 피드백을 반영하여 지속적으로 개선해나가야 할 것입니다. 

 

이번 포스팅에서는 (a) 간격을 동일하게 한 범주화와 (b) quantile을 활용한 범주화 (c) frequency를 동일하게 한 범주화를 R로 어떻게 하는지Cars93 데이터셋의 고속도로 연비(MPG.highway)을 가지고 예를 들어보겠습니다.

 

(참고로, Cars93 은 MASS 패키지에 내장된 데이터 셋으로서, 자동차의 속성에 대해서 27개의 변수, 93개 자동차 관측치를 가진 데이터 프레임)

 

(a) 간격을 동일하게 한 범주화는 R의 hist() 함수로 히스토그램을 그려보는 것이 좋은 출발점이 될 수 있습니다. R의 hist() 함수의 디폴트 구간 개수가 꽤 좋은 결과를 내주거든요.  bin size를 조정해가면서 분포를 탐색해보고서 특정 구간에서 변곡점이 있다면, 혹은 특정 segment 나 factor 별로 분포상의 큰 차이를 보인다면 그 구분선을 가지고 범주를 나눌 수도 있을 것입니다.

 

R의 within() 함수를 활용하여 아래의 Cars93의 고속도로연비는 20~50까지 5단위씩 등간격으로 6개 범주로 나누어 보겠습니다. 

 

> library(MASS)
> str(Cars93)
'data.frame':	93 obs. of  27 variables:
 $ Manufacturer      : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
 $ Model             : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74 73 35 ...
 $ Type              : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
 $ Min.Price         : num  12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
 $ Price             : num  15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
 $ Max.Price         : num  18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
 $ MPG.city          : int  25 18 20 19 22 22 19 16 19 16 ...
 $ MPG.highway       : int  31 25 26 26 30 31 28 25 27 25 ...
 $ AirBags           : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2 ...
 $ DriveTrain        : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
 $ Cylinders         : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5 ...
 $ EngineSize        : num  1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
 $ Horsepower        : int  140 200 172 172 208 110 170 180 170 200 ...
 $ RPM               : int  6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
 $ Rev.per.mile      : int  2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
 $ Man.trans.avail   : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
 $ Fuel.tank.capacity: num  13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
 $ Passengers        : int  5 5 5 6 4 6 6 6 5 6 ...
 $ Length            : int  177 195 180 193 186 189 200 216 198 206 ...
 $ Wheelbase         : int  102 115 102 106 109 105 111 116 108 114 ...
 $ Width             : int  68 71 67 70 69 69 74 78 73 73 ...
 $ Turn.circle       : int  37 38 37 37 39 41 42 45 41 43 ...
 $ Rear.seat.room    : num  26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
 $ Luggage.room      : int  11 15 14 17 13 16 17 21 14 18 ...
 $ Weight            : int  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
 $ Origin            : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
 $ Make              : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ..
 

> ## 고속도로연비(MPG.highway) 히스토그램

> hist(Cars93$MPG.highway)
 

 

 

> ## Model, MPG.highway 두 개 변수만 선택해서 disc_1 데이터 프레임 생성

> disc_1 <- Cars93[,c("Model", "MPG.highway")]

> ## 상위 6개 미리보기

> head(disc_1) Model MPG.highway 1 Integra 31 2 Legend 25

3 90 26 4 100 26

5 535i 30 6 Century 31

>

>

> ## 6개 범주로 등간격 범주화

 

 

> disc_1 <- within( disc_1, { + MPG.highway_cd = character(0) + MPG.highway_cd[ MPG.highway >=20 & MPG.highway <25 ] = "20~25" + MPG.highway_cd[ MPG.highway >=25 & MPG.highway <30 ] = "25~30" + MPG.highway_cd[ MPG.highway >=30 & MPG.highway <35 ] = "30~35" + MPG.highway_cd[ MPG.highway >=35 & MPG.highway <40 ] = "35~40" + MPG.highway_cd[ MPG.highway >=40 & MPG.highway <45 ] = "40~45" + MPG.highway_cd[ MPG.highway >=45 & MPG.highway <=50 ] = "45~50" + MPG.highway_cd = factor(MPG.highway_cd, + level = c("20~25", "25~30", "30~35", + "35~40", "40~45", "45~50")) + })

> 

> ## 상위 6개 보기

> head(disc_1)
    Model MPG.highway MPG.highway_cd
1 Integra          31          30~35
2  Legend          25          25~30
3      90          26          25~30
4     100          26          25~30
5    535i          30          30~35
6 Century          31          30~35
 

 

 

> attributes(disc_1$MPG.highway_cd)
$levels
[1] "20~25" "25~30" "30~35" "35~40" "40~45" "45~50"

$class
[1] "factor"

 

 

> table(disc_1$MPG.highway_cd) # 분할표 생성

 

20~25 25~30 30~35 35~40 40~45 45~50 14 41 27 7 2 2

 

"MPG.highway" 변수 옆에 "MPG.highway_cd" 라는 범주형 변수가 생겼음을 알 수 있습니다.  나중에 통계분석과 연계하기 위해 "MPG.highway_cd" 변수를 within()함수의 제일 마지막 줄에서 요인(factor)으로 지정을 해줬고, level = c("20~25", "25~30", "30~35", "35~40", "40~45", "45~50")) 으로 순서형 요인(ordered factor)의 수준을 지정해주었습니다.

 

 

다음으로 (b) quantile을 활용한 범주화 방법에 대해서 알아보겠습니다.  MPG.highway를 0~25%, 25~50%, 50~75%, 75~100%의 구성비로 해서 4개 범주로 나누어보겠습니다.

 

> summary(disc_1$MPG.highway)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  20.00   26.00   28.00   29.09   31.00   50.00
> 

> # 4분위수의 1Q, 2Q, 3Q, 4Q를 기준으로 4개의 범주 생성

> disc_1 <- within( disc_1, {
+   MPG.highway_cd2 = character(0)
+   MPG.highway_cd2[ MPG.highway <  quantile(MPG.highway, 0.25) ] = "1Q"
+   MPG.highway_cd2[ MPG.highway >= quantile(MPG.highway, 0.25) 
+                    & MPG.highway < quantile(MPG.highway, 0.50) ] = "2Q"
+   MPG.highway_cd2[ MPG.highway >=quantile(MPG.highway, 0.50) 
+                    & MPG.highway < quantile(MPG.highway, 0.75) ] = "3Q"
+   MPG.highway_cd2[ MPG.highway >= quantile(MPG.highway, 0.75) ] = "4Q"
+   MPG.highway_cd2 = factor(MPG.highway_cd2, 
+                           level = c("1Q", "2Q", "3Q", "4Q"))
+ })
> 

> # 상위 6개 보기

> head(disc_1)
    Model MPG.highway MPG.highway_cd MPG.highway_cd2
1 Integra          31          30~35              4Q
2  Legend          25          25~30              1Q
3      90          26          25~30              2Q
4     100          26          25~30              2Q
5    535i          30          30~35              3Q
6 Century          31          30~35              4Q
 

 

 

> table(disc_1$MPG.highway_cd2)  # 분할표 생성

1Q 2Q 3Q 4Q 
22 17 25 29 

 

 

다음으로, (c) frequency를 동일하게 해서 4개 범주를 구성해보도록 하겠습니다.  먼저 고속도로연비(MPG.highway) 기준으로 정렬을 해줘야합니다.

 

> ## 고속도로연비(MPG.highway) 기준으로 오름차순 정렬

> disc_1 <- disc_1[order(disc_1$MPG.highway), ]

 

 

> dim(disc_1) # 93개 관측치, 4개 변수 [1] 93 4

 

## 관측치 개수

> dim(disc_1)[1]
[1] 93
> 

> disc_1$N <- seq(1:length(disc_1$MPG.highway)) # 1~93까지 순서대로 1씩 증가하는 N이라는 변수 생성

>

> # 동일 frequency (23개)로 4개 범주 생성

> disc_1 <- within( disc_1, { + MPG.highway_cd3 = character(0) + MPG.highway_cd3[ N <= 23 ] = "1st_Freq" + MPG.highway_cd3[ N >= 24 & N <= 46 ] = "2nd_Freq" + MPG.highway_cd3[ N >= 47 & N <= 69 ] = "3rd_Freq" + MPG.highway_cd3[ N >= 70 ] = "4th_Freq" + MPG.highway_cd3 = factor(MPG.highway_cd3, + level = c("1st_Freq", "2nd_Freq", "3rd_Freq", "4th_Freq")) + }) > > head(disc_1) Model MPG.highway MPG.highway_cd MPG.highway_cd2 N MPG.highway_cd3 17 Astro 20 20~25 1Q 1 1st_Freq 36 Aerostar 20 20~25 1Q 2 1st_Freq 26 Caravan 21 20~25 1Q 3 1st_Freq 89 Eurovan 21 20~25 1Q 4 1st_Freq 48 Q45 22 20~25 1Q 5 1st_Freq 87 Previa 22 20~25 1Q 6 1st_Freq

 

 

 

 

>

 

 

> table(disc_1$MPG.highway_cd3) 1st_Freq 2nd_Freq 3rd_Freq 4th_Freq 23 23 23 24

 

위의 분할표를 보면 4개 범주별로 23개, 23개, 23개, 24개(총 93개여서 마지막에 1개 더 넣음) 로 동일 frequency로 범주화가 되었음을 알 수 있습니다.  그런데 (c) 같은 frequency 로 범주화 시에 동일한 고속도로연비임에도 범주가 다르게 구분이 되는 수가 생깁니다.  아래 예에서 보면 고속도로연비가 28인 경우 "2nd_Freq"와 "3rd_Freq" 범주에 양다리 걸쳐있는것을 확인할 수 있습니다.  ("1st_Freq"와 "2nd_Freq"에도 고속도로연비 26이 양다리를 걸치고 있습니다.  또한 31이 "3rd_Freq"와 "4th_Freq"에 양다리를 걸치고 있습니다.)  이처럼 동일 frequency로 범주화시에는 중첩됨이 없이 범주화하기가 어려운 문제점이 있습니다.  따라서 해석의 용이성과 중첩 방지를 위해서 (a) 등간격 범주화 또는 (b) quantile 활용 범주화가 (c) 동일 freqency보다는 좀더 유용하다고 볼 수 있겠습니다. 

 

 

이항변수화 (binarization)은 다음번 포스팅에서 소개해드리겠습니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

 

728x90
반응형
Posted by Rfriend
,

데이터 변환 방법으로서

 

(1) 표준화 (Standardizatio)

(2) 정규분포화

(3) 범주화

   - 이산형화

   - 이항변수화

(4) 개수 축소

(5) 차원 축소

   - 주성분분석

   - 요인분석 

(6) 시그널 데이터 압축

 

중에서 (1) 표준화(Standardization)에 대해서 알아보겠습니다. 

 

 

다양한 소스로 부터 데이터를 R로 불러와서, 결합하고, 결측값과 특이값을 확인 후 처리하고, 필요한 부분의 데이터만 선별적으로 선택 혹은 제거한 후에 분석의 목적과 필요에 따라서, 그리고 데이터의 형태에 따라서 다양한 데이터 변환 (data transformation) 작업을 수행합니다. 

 

고급 분석가와 그렇지 않는 분석가가 나뉘는 부분, 데이터 엔지니어와 데이터 분석가가 나뉘어 지는 부분이 여기서 부터 이지 않을까 싶습니다.  업에 대한 지시과 더불어 분석의 목적과 분석의 기법에 대해서 정확히 알아야 하고, 데이터의 형태가 그에 맞는지, 맞지 않다면 어떻게 변환을 해야 하는지 알아야 하기 때문입니다.  그리고 데이터 변환을 하는데 있어 통계적인 기본 지식이 필요하다보니 여기부터는 프로그래밍을 잘하지만 통계를 잘 모르는 데이터 엔지니어의 경우 어려움을 겪기 시작합니다.

 

이 변환 작업에는 많은 시간과 노력이 필요합니다.  그래서 데이터 분석을 업으로 삼으려고 생각했던 사람이라도 소위 데이터 전처리, 데이터 변환의 지난한 과정에 대해서 재미를 느끼지 못하면 오래 견디지 못하고 다른 커리어로 전향을 하기도 합니다.  그만큼 본격적인 통계/데이터마이닝 과정에 진입하기 위한 전초 단계로 중요하지만 쉽지 많은 않은 과정이라는 얘기입니다. 

 

모델링을 하는데 있어 분석 목적에 유의미하고 적합한 파생변수를 개발하고 input으로 넣는 것이 정말 중요합니다.  개념적 정의, 조작적 정의를 통해 파생변수를 개발하는 과정에 필수로 필요한 이론적 지식이 이번부터 해서 총 6번에 나누어서 진행할 데이터 변환이 되겠습니다. 

 

데이터 변환을 (1) 표준화, (2) 정규분포화, (3) 범주화, (4) 개수 축소(샘플링), (5) 차원 축소, (6) 시그널 데이터 압축 등의 6개 카테고리로 구분하였습니다.  대략적으로 봤을 때 (1) 표준화, (2) 정규분포화, (3) 범주화는 데이터 분포나 속성을 변화시키는 기법이고, (4) 개수 축소(샘플링), (5) 차원 축소, (6) 시그널 데이터 압축은 데이터 크기를 축소하는 기법이 되겠습니다.

 

이번 포스팅에서는 (1) 표준화의 (1-1) z 변환, (1-2) [0-1] 변환에 대해서 알아보겠습니다.  

 

 

데이터 변환 (1) 표준화 

 

 

[ 데이터 변환 구성 ]

 

 

 

 

(1-1) 표준정규분포 z 변환

 

우선 정규분포에 대해서 간략히 짚고 z 변환으로 넘어가겠습니다. 일상 생활 속에서 우리는 다양한 정규분포를 접하고 삽니다.  만약 100명의 수강생을 대상으로 통계와 R 분석 교육을 받고 시험을 치면 아마도 평균을 중심으로 종모양으로 좌우 분포가 비슷한 성적 분포를 띨 것입니다.  수강생 100명의 키와 몸무게를 조사를 해서 히스토그램을 그려보면 이 또한 평균을 중심으로 종모양으로 좌우 대칭인 정규분포를 띨 것입니다.  수강생 얼굴을 아직 본적도 없는데 이렇게 예언을 할 수 있다는거, 이게 참 신기한겁니다. ^^  만약 키의 평균과 표준편차를 저한테 알려주고, 수강생 100명 중에서 한 명의 수강생을 뽑아서 키를 재서 저에게 알려주면 그 수강생이 전체 100명 중에서 상위 몇 % 키에 속할지도 추측할 수 가 있습니다. 놀랍지요?

 

통계학에서는 '중심극한정리(central limit theorem)'이 정말 중요한 역할을 하는데요, 중심극한정리란 분포의 모양을 모르는 모집단으로부터 표본을 추출할 때, 표본평균 의 분포는 표본의 크기 n이 커짐(일반적으로 )에 따라 점점 정규분포로 근사해 간다는 성질을 말합니다.

 

 

참고 ) 중심극한정리 (Central Limit Theorem)

 

을 평균 , 분산 인 모집단으로부터의 크기 n 인 확률표본이라고 했을 때,

표본평균 의 분포는 n이 커짐에 따라 정규분포 으로 근사해 간다.

 

 

중심극한정리에서 표본평균 를 표준화하면

 

통계량 근사적으로 표준정규분포 을 따른다.

 

 

 

 

 이 중심극한정리에 근거해서 보통 샘플이 대략 30개 이상이면 표본평균이 정규분포로 근사한다고 가정하고 정규분포 가정에 근거한 다양한 통계분석 기법(추정과 검정 등...)을 적용할 수 있게 됩니다. 

 

이때 두 개 이상의 모집단으로 부터 표본의 크기가 큰 표본을 추출했을 때, 각 집단의 평균과 표준편차가 다르거나, 혹은 측정 scale 이 다른 경우에는 다수의 집단 간, 변수 간 직접적인 비교가 불가능하게 됩니다.   미국 달러, 유럽의 유로화, 중국의 위안화, 일본의 엔화, 그리고 한국의 원화를 각 각 1000 단위를 가지고 있다고 했을 때, 이게 서로간에 대비해서 얼마나 많은 건지, 값어치가 있는건지 직접 비교하는게 불가능한 것과 같은 이치입니다.  이때 특정 나라의 통화를 기준으로 삼고 다른 나라의 통화를 기준으로 변환을 하면 각 나라별 통화간의 돈의 가치를 비교할 수 있게 됩니다.  이게 표준화의 원리입니다.

 

위에서 정규분포의 중요성에 대해서 설명했는데요, 정규분포 중에서도 평균이 0, 표준편차가 1인 정규분포를 표준정규분포(standadized normal distribution) 이라고 합니다.  평균이 표준편차가 서로 다른 다수의 집합을 표준정규분포로 표준화를 하면 서로 비교를 할 수 있게 됩니다. 

 

그러면, 이제 R로 표준정규화 하는 방법에 대해서 알아보겠습니다.

 

  • 한국 성인 남성 1,000 명의 키가 평균 170cm, 표준편차 10cm의 정규분포
  • 남아프리카 부시맨 성인 남성 1,000명의 키가 평균 150cm, 표준편차 8cm의 정규분포

를 따른 다고 했을 때 두 집단의 키를 평균이 0, 표준편차가 1인 표준정규분포로 표준화를 해보도록 하겠습니다.

 

 

 먼저, 데이터 생성은 아래와 같이 랜덤하게 생성하였습니다.

 

> ## 한국인, 부시맨 각 성인 1000명 키 데이터 생성 > height_korean <- rnorm(n=1000, mean = 170, sd = 10) > height_bushman <- rnorm(n=1000, mean = 150, sd = 8) > > height <- data.frame(height_korean, height_bushman) # 데이터 프레임 생성

> rm(height_korean, height_bushman) # 벡터 삭제

> > head(height) # 상위 6개 데이터 확인 height_korean height_bushman 1 162.7654 132.5271 2 180.5701 135.5497 3 172.6752 142.5168 4 171.8035 156.7872 5 186.5258 154.3027 6 171.4634 156.1118 

 

> ## 한국인, 부시맨 키 히스토그램

> attach(height)
> par( mfrow = c(1,2))
> hist(height_korean, freq = TRUE, main = "한국인 키 빈도 히스토그램")
> hist(height_korean, freq = FALSE, main = "한국인 키 확률밀도함수 그래프")
> 

 

 

> hist(height_bushman, freq = TRUE, main = "부시맨 키 빈도 히스토그램")
> hist(height_bushman, freq = FALSE, main = "부시맨 키 확률밀도함수 그래프")

 

 

> detach(height)

 

 

그리고 표준정규화를 해보겠는데요, (a) scale()함수를 쓰는 방법과 (b) (x-mean(x))/sd(x) 처럼 공식을 직접 입력하는 방법이 있습니다.  결과는 동일합니다.

 

> ## a. scale() 함수
> 
> height <- transform(height, 
+                     z.height_korean = scale(height_korean), 
+                     z.height_bushman = scale(height_bushman)
+                     )
> 
> head(height)
  height_korean height_bushman z.height_korean z.height_bushman
1        179.19         140.60         0.89308         -1.18393
2        164.54         152.70        -0.60892          0.35689
3        184.18         136.76         1.40477         -1.67426
4        196.37         144.26         2.65531         -0.71833
5        162.61         155.72        -0.80706          0.74198
6        158.02         147.19        -1.27775         -0.34510

 

> ## b. z=(x-mean(x))/sd(x)
> height <- transform(height, 
+                     z2.height_korean = (height_korean - mean(height_korean))/sd(height_korean), 
+                     z2.height_bushman = (height_bushman - mean(height_bushman))/sd(height_bushman)
+                     )
> 
> head(height)
  height_korean height_bushman z.height_korean z.height_bushman z2.height_korean z2.height_bushman
1        179.19         140.60         0.89308         -1.18393          0.89308          -1.18393
2        164.54         152.70        -0.60892          0.35689         -0.60892           0.35689
3        184.18         136.76         1.40477         -1.67426          1.40477          -1.67426
4        196.37         144.26         2.65531         -0.71833          2.65531          -0.71833
5        162.61         155.72        -0.80706          0.74198         -0.80706           0.74198
6        158.02         147.19        -1.27775         -0.34510         -1.27775          -0.34510 

 

 

아래 히스토그램은 한국인과 부시맨의 성인 남자 키를 z 표준화 한 값에 대한 히스토그램이 되겠습니다.  둘다 평균이 0, 표준편차가 1인 표준정규분포로 표준화 되었음을 확인할 수 있습니다.

 

> hist(height$z.height_korean, freq=TRUE, main="standized freq. of Korean H")
> hist(height$z.height_bushman, freq=TRUE, main="standized  freq. of Bushman H ")

 

 

 

 

 

(1-2) [0-1] 변환

 

연속형 변수의 값을 '0~1' 사이의 값으로 변환하는 [0-1]변환도 z변환과 함께 많이 쓰이는 표준화 기법입니다.  만약 변수들 간의 scale 이 다른 상태에서 인공신경망 분석을 하려면 [0-1]변환으로 단위를 표준화해준 후에 분석을 시행해야 합니다.  Scale이 다른 두 변수를 [0-1] 변환하게 되면 상호간에 비교가 가능해집니다.

 

[0-1] 변환은  (x-min(x) /(max(x)-min(x)) 의 수식으로 계산하면 됩니다.

 

위의 한국 성인 남성과 부시맨 성인 남성 각 1,000명의 키 데이터를 가지고 이번에는 [0-1] 표준화 변환을 해보도록 하겠습니다.  일단 위 데이터셋 height에서 첫번째와 두번째 변수만 선택하고, 변수명이 너무 길므로 짧게 변수이름을 변경해보겠습니다.

 

> ## [0-1] transformation
> height <- height[,c(1:2)]
> library(reshape)
> height <- rename(height, c(height_korean = "h_kor", height_bushman = "h_bush"))
> head(height)
   h_kor h_bush
1 179.19 140.60
2 164.54 152.70
3 184.18 136.76
4 196.37 144.26
5 162.61 155.72
6 158.02 147.19

 

 

그 다음 [0-1] 변환을 하고 히스토그램을 그려보겠습니다.

 

> height <- transform(height, 
+                     h_kor_01 = (h_kor - min(h_kor))/(max(h_kor) - min(h_kor)), 
+                     h_bush_01 = (h_bush - min(h_bush))/(max(h_bush) - min(h_bush))
+                     )
> 
> head(height)
   h_kor h_bush h_kor_01 h_bush_01
1 179.19 140.60  0.64341   0.27053
2 164.54 152.70  0.41760   0.51072
3 184.18 136.76  0.72034   0.19410
4 196.37 144.26  0.90835   0.34311
5 162.61 155.72  0.38781   0.57074
6 158.02 147.19  0.31705   0.40129
> 
> hist(height$h_kor_01)
> hist(height$h_bush_01)
 
 

 

 

 

한국 성인 남성 키와 부시맨 성인 남성 키가 0~1 사이의 값으로 표준화되었음을 알 수 있습니다.

 

이해가 쉽도록 166cm의 한국 남성과 156cm의 부시맨 남성의 키를 가지고 [0-1] 변환 했을 때의 예시를 개념도로 아래에 작성하였습니다.  참고하시기 바랍니다.

 

 

[0-1] 변환 예시 (한국 남성 166cm, 부시맨 남성 156cm) 

 

 

 

많은 도움 되었기를 바랍니다. 

 

다음번 포스팅에서는 정상화 변환에 대해서 알아보도록 하겠습니다.



여러개의 변수를 가진 DataFrame에 대해서 층화 무작위 추출을 사용해서 Train, Test set 분할을 하는 방법은 아래의 포스팅을 참고하세요. 

==> https://rfriend.tistory.com/515


 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

 


728x90
반응형
Posted by Rfriend
,