관측값이 질적 자료(qualitative data) 또는 어떤 속성에 따라 분류되어 범주(category)에 속하는 도수(frequency)로 주어질 경우 이를 범주형 자료(categorical data) 라고 합니다. 범주형 자료의 예로는 학력(초등졸, 중등졸, 고등졸, 대졸, 대학원졸), 연수익(극빈, 하, 중, 상, 극상) 등이 있습니다.

 

지난 포스팅에서는 범주형 자료분석 중에서 (1) 적합도 검정, (2) 독립성 검정 (test of independence)에 대해서 소개하였다면, 이번 포스팅에서는 (3) 동질성 검정(test of homogeneity)을 다루도록 하겠습니다.

 

범주형 자료 분석 유형별 간략한 소개는 아래와 같습니다.

 

 

 

 

[ 범주형 자료 분석 (categorical data test) ]

 

(1) 적합도 검정(goodness of fit test) : 관측값들이 어떤 이론적 분포를 따르고 있는지를 검정. 한 개의 요인을 대상으로 함 

 

(2) 독립성 검정(test of independence) : 서로 다른 요인들에 의해 분할되어 있는 경우 그 요인들이 관찰값에 영향을 주고 있는지 아닌지, 요인들이 서로 연관이 있는지 없는지를 검정. 두 개의 요인을 대상으로 함.

 

(3) 동질성 검정(test of homogeneity) : 관측값들이 정해진 범주 내에서 서로 비슷하게 나타나고 있는지를 검정. 속성 A, B를 가진 부모집단(subpopulation) 각각으로부터 정해진 표본의 크기만큼 자료를 추출하는 경우에 분할표에서 부모집단의 비율이 동일한가를 검정. 두 개의 요인을 대상으로 함.  

 

 

 

 

 

 

 

독립성 검정과 동질성 검정의 이해를 돕기 위해 서로 비교를 해보자면,

 

(1) 독립성 검정이 두 변수 X와 Y가 서로 독립인지 아닌지에 대한 판단이라면, 동질성 검정은 r개의 행과 c개의 열을 가진 두 변수 X와 Y로부터 작성된 분할표의 각 열분포에서 행들이 균일한 값을 가지는지 즉, 각 열에서 행들의 동질성(homegeneity)를 검정하는 것입니다. 두 검정법의 이런 차이점은 개념상의 차이일 뿐이며 검정을 하는 방법은 카이제곱 검정을 이용해서 동일합니다.

 

(2) 독립성 검정은 하나의 모집단에서 표본을 무작위로 추출한 후 추출된 표본을 두가지 속성(변수)에 따라 분류합니다.  반면에 동질성 검정은 부모집단(subpopulation)을 먼저 설정한 후 각 부모집단으로부터 정해진 표본의 크기만큼 무작위로 추출하여 분할표에서 부모집단의 비율이 동일한가를 검정하게 됩니다. 가령, 소득수준에 따라 지지 정당이 동일한지 여부를 검정한다고 할 때, 우선 소득수준을 부모집단으로 설정하고, 각 소득수준별로 정해진 크기의 표본을 무작위로 추출하는 식입니다.

 

 

r개의 행과 c개의 열을 가진 두 변수 X와 Y로부터 작성된 r*c 분할표를 이용한 동질성 검정을 위한 데이터셋 구조는 아래와 같습니다.

 

 

[ 동질성 검정 자료 구조 (dataset for test of homogeneity) ]

 

 

 

동질성 검정을 위한 가설과 검정통계량, 검정방법은 아래와 같습니다. 검정통계량 X^2 는 귀무가설 H0가 사실일 때 근사적으로 자유도 (r-1)(c-1)인 카이제곱 분포를 따르는 것으로 알려져있습니다.

 

 

[ 동질성 검정 가설 및 검정 통계량, 검정 방법 ]

 

(1) 가설

 

  - 귀무가설 H0 : p1j = p2j = ... = prj,   j = 1, ..., c

 

  - 대립가설 H1 : H0가 아니다

 

 

(2) 검정 통계량

 

 

(3) 검정 방법

 

 

 

이제 아래의 문제를 R의 chisq.test() 함수를 이용해서 풀어보도록 하겠습니다.

 

 

(문제) 초등학교 1학년 남학생 100명과 여학생 200명을 무작위로 추출하여 TV 프로그램 선호도를 조사하였다. 유의수준 α 0.05 에서 남학생의 TV 프로그램 선호도와 여학생의 TV프로그램 선호도가 동일한지 검정하여라.

 

 

선호 TV 프로그램 

row total 

 뽀로로

짱구는 못말려 

로봇카 폴리 

 남학생

 50

30

20 

100

 여학생

 50

80

70 

200

 column total

100

110

90

300

 

 

 

 

[가설]
- H0 : 남학생과 여학생별로 TV 선호도는 동일하다
         (p1j = p2j,   j = 뽀로로, 짱구는 못말려, 로봇카 폴리)

- H1 : H0가 아니다

 

 

아래 분석에 사용한 R chisq.test() 함수는 이전 포스팅의 독립성 검정과 동일합니다.

 

 

> ##---------------------------------------------------------------------
> ## categorical data analysis - (3) test of homogeneity : chisq.test()
> ##---------------------------------------------------------------------
> 
> ##-------------
> # (a) textbook problem
> 
> ## data key-in
> # data key-in way 1 : rbind()
> row_1 <- c(50, 30, 20)
> row_2 <- c(50, 80, 70)
> 
> data_rbind <- rbind(row_1, row_2)
> data_rbind
      [,1] [,2] [,3]
row_1   50   30   20
row_2   50   80   70
> 
> 
> # data key-in way 2 : matrix()
> raw_data <- c(50, 30, 20, 50, 80, 70)
> data_matrix <- matrix(raw_data, byrow=TRUE, nrow=2)
> data_matrix
     [,1] [,2] [,3]
[1,]   50   30   20
[2,]   50   80   70
> 
> 
> # giving names to the rows and columns of the data table : dimnames()
> dimnames(data_matrix) <- list("Gender" = c("Boys", "Girls"), 
+                               "TV_Preferences" = c("Pororo", "JJangGu", "RobotCar"))
> 
> data_matrix
       TV_Preferences
Gender  Pororo JJangGu RobotCar
  Boys      50      30       20
  Girls     50      80       70
> 
> 
> ## exploratory data analysis
> # marginal distribution : addmargins()
> addmargins(data_matrix)
       TV_Preferences
Gender  Pororo JJangGu RobotCar Sum
  Boys      50      30       20 100
  Girls     50      80       70 200
  Sum      100     110       90 300
> 
> 
> # proportional distribution : prop.table()
> prop.table(data_matrix)
       TV_Preferences
Gender     Pororo   JJangGu   RobotCar
  Boys  0.1666667 0.1000000 0.06666667
  Girls 0.1666667 0.2666667 0.23333333
> 
> addmargins(prop.table(data_matrix))
       TV_Preferences
Gender     Pororo   JJangGu   RobotCar       Sum
  Boys  0.1666667 0.1000000 0.06666667 0.3333333
  Girls 0.1666667 0.2666667 0.23333333 0.6666667
  Sum   0.3333333 0.3666667 0.30000000 1.0000000
> 
> 
> # bar plot : barplot()
> barplot(t(data_matrix), beside=TRUE, legend=TRUE, 
+         ylim=c(0, 120), 
+         ylab="Observed frequencies in sample", 
+         main="TV viewing preferences by gender")
> 

 

> 
> ## chisquared test : chisq.test()
> chisq.test(data_matrix)

	Pearson's Chi-squared test

data:  data_matrix
X-squared = 19.318, df = 2, p-value = 6.384e-05

> 
> 
> # indexing statistics of chisq.test()
> chisq.test_output_2 <- chisq.test(data_matrix)
> 
> chisq.test_output_2$observed # observed frequency
       TV_Preferences
Gender  Pororo JJangGu RobotCar
  Boys      50      30       20
  Girls     50      80       70
> chisq.test_output_2$expected # expected frequeycy
       TV_Preferences
Gender    Pororo  JJangGu RobotCar
  Boys  33.33333 36.66667       30
  Girls 66.66667 73.33333       60
> chisq.test_output_2$residuals # residual between observed and expected frequecy
       TV_Preferences
Gender     Pororo    JJangGu  RobotCar
  Boys   2.886751 -1.1009638 -1.825742
  Girls -2.041241  0.7784989  1.290994
> 
> chisq.test_output_2$statistic # chi-squared statistics
X-squared 
 19.31818 
> chisq.test_output_2$parameter # degrees of freedom
df 
 2 
> chisq.test_output_2$p.value # P-value
[1] 6.384253e-05

 

 

 

위의 분석 결과를 해석해보자면, 카이제곱 통계량 값이 19.318이 나왔고 P-value가 6.384e-05 로서 유의수준 α 0.05 보다 훨씬 작기때문에 귀무가설 H0 를 기각하고 대립가설 H1을 채택하여 "남학생/여학생별 선호하는 TV프로그램은 동일하지 않다"고 판단할 수 있겠습니다.

 

많은 도움이 되었기를 바랍니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡'를 꾸욱 눌러주세요. ^^

 

Posted by R Friend R_Friend

댓글을 달아 주세요

  1. uui 2017.08.27 18:08  댓글주소  수정/삭제  댓글쓰기

    독립성 검정과 동질성 검정의 차이를 모르겠습니다.
    동질성 검정에서 각 subpopulation을 하나의 범주형 변수의 값으로 취급하는게 가능하고(위의 예제에서 성별=남/여)
    그러면 즉 독립성 검정과 차이가 없는 것 아닌가요?

    • R Friend R_Friend 2017.08.27 19:02 신고  댓글주소  수정/삭제

      네, 독립성 검정과 동질성 검정은 개념상의 차이(귀무가설을 서로 비교해보세요)가 있기는 하지만, 말씀해주신 것처럼 문제를 돌려서 생각할 수 있기도 하고, 문제 푸는 벙법도 똑같습니다.

지난 포스팅에서는 범주형 자료분석 중에서 (1) 적합도 검정에 대해서 소개하였다면, 이번 포스팅에서는 (2) 독립성 검정 (test of independence)에 대해서 알아보겠으며, 다음번 포스팅에서는 (3) 동질성 검정을 다루도록 하겠습니다.

 

 

범주형 자료 분석 유형별 간략한 소개는 아래와 같습니다.

 

 

 

[ 범주형 자료 분석 (categorical data test) ]

 

(1) 적합도 검정(goodness of fit test) : 관측값들이 어떤 이론적 분포를 따르고 있는지를 검정. 한 개의 요인을 대상으로 함 

 

(2) 독립성 검정(test of independence) : 서로 다른 요인들에 의해 분할되어 있는 경우 그 요인들이 관찰값에 영향을 주고 있는지 아닌지, 요인들이 서로 연관이 있는지 없는지를 검정. 두 개의 요인을 대상으로 함.

 

(3) 동질성 검정(test of homogeneity) : 관측값들이 정해진 범주 내에서 서로 비슷하게 나타나고 있는지를 검정. 속성 A, B를 가진 부모집단(subpopulation) 각각으로부터 정해진 표본의 크기만큼 자료를 추출하는 경우에 분할표에서 부모집단의 비율이 동일한가를 검정. 두 개의 요인을 대상으로 함.

 

 

 

 

 

 

 

 

 

독립성 검정(test of independence)은 두 개의 범주형 변수/요인(2 factors)이 서로 연관성이 있는지, 상관이 있는지, 독립적인지를 카이제곱 검정(chisquared test)을 통해 통계적으로 판단하는 방법입니다.

 

가령, 학력(초등졸, 중등졸, 고등졸, 대졸, 대학원졸)이라는 범주형 변수(variable X)/요인(factor 1)와 연소득(하, 중, 상)이라는 범주형 변수(variable Y)/요인(factor 2) 간에 서로 관련성이 있는 것인지 아니면 관련이 없이 독립적인지를 판단하는 것과 같은 문제에 독립성 검정을 사용합니다.

 

참고로, 두 변수가 양적변수(qualitative variable)인 경우 두 변수 간 상관관계 분석을 위해서는 공분산 분석, 상관계수 분석, 회귀분석 등을 활용합니다.

 

범주형 자료분석의 경우 두 변수의 관련성을 보려면 분할표를 만들어서 카이제곱 검정을 하게 되는데요, 두 변수간의 관련성을 양적변수 분석할 때처럼 숫자로 얼마나 관련성이 큰지를 알 수 있는 통계량을 제공하지는 않습니다.  (범주형 자료분석에서 두 변수 간 관련성 측도로 파이계수, 속성계수, 크레머 V 등의 통계량이 있는데요, 이번 포스팅에서는 이에 대한 설명은 건너뛰겠습니다.)

 

 

자료를 분류하는 두 변수를 x와 Y라고 하고, 변수 X는 m개, 변수 Y는 n개의 범주(혹은 계급 class, 혹은 요인 수준 factor level)를 가진다고 했을 때 관측도수 Oij 는 m개와 n개의 층으로 이루어진 아래와 같은 표로 정리할 수 있습니다.  이를 m*n 분할표 (m*n contingency table)이라고 부릅니다.

 

 

[ 독립성 검정 자료 구조 (dataset for test of independence) ]

 

 

 

 

독립성 검정에는 카이제곱 X^2 통계량을 사용하는데요, 귀무가설 H0 가 사실일 때 자유도 (m-1)(n-1)인 카이제곱분포에 근사하는 것으로 알려져 있습니다. (☞ 카이제곱 분포(Chi-squared distribution) 참고 포스팅

 

검정통계량 카이제곱 X^2 은 각 범주의 기대도수가 5 이상인 경우에 사용하는 것이 바람직하며, 기대도수가 5 미만인 경우에는 주의를 요합니다. (5보다 작으면 인접 범주와 합치는 것도 방법)

 

기본 원리는, 관측도수 O11, O21, ..., Omn 이 기대도수 E11, E21, ..., Emn 과 차이가 없다면 검정통계량 X0^2 값이 '0'이 되고, 반대로 관측도수와 기대도수가 차이가 크다면 검정통계량 값 또한 커지게 된다는 것입니다.

 

 

 

 

 

[ 독립성 검정(test of independence) 가설 및 검정 통계량, 검정 방법 ]

 

(1) 가설 (hypothesis)

 

  - 귀무가설 H0 : 두 변수 X와 Y는 서로 독립이다 (관련성이 없다)
                        ( pij = pim * pnj,   i = 1, 2, .., m,   j = 1, 2, ..., n )

 

  - 대립가설 H1 : 두 변수 X와 Y는 서로 독립이 아니다 (관련성이 있다)

 

 

 

(2) 검정 통계량 (chisquared test statistics)

 

 

 

(3) 검정 방법 (test method)

 

 

  • (a) chisq.test() of data from text problem

 

아래 문제에 대해서 R의 chisq.test() 함수를 사용해서 풀어보도록 하겠습니다. 

 

 

(문제)  학급 (class 1, class 2, class 3)과 수학 성적 (math score High, Middle, Low, Fail) 간의 관련성이 있는지를 조사한 아래의 분할표를 사용하여 유의수준 α 0.05 로 검정하여라.  

 

 

학급과 수학성적 분할표 (contingency table of class & math score)

 

 

score High 

score Middle 

score Low 

Fail 

Class 1

7

13

9

12

 Class 2

13

21

10

19

 Class 3

11

18

12

13

 

 

 

먼저 데이터 입력 및 탐색적 분석을 위한 R 함수입니다.

 

 

> ##---------------------------------------------------------------------
> ## categorical data analysis - (2) test of independence : chisq.test()
> ##---------------------------------------------------------------------
> 
> ##-------------
> # (a) textbook problem
> 
> ## data key-in
> # data key-in way 1 : rbind()
> row_1 <- c(7, 13, 9, 12)
> row_2 <- c(13, 21, 10, 19)
> row_3 <- c(11, 18, 12, 13)
> 
> data_rbind <- rbind(row_1, row_2, row_3)
> data_rbind
      [,1] [,2] [,3] [,4]
row_1    7   13    9   12
row_2   13   21   10   19
row_3   11   18   12   13
> 
> 
> # data key-in way 2 : matrix()
> raw_data <- c(7, 13, 9, 12, 13, 21, 10, 19, 11, 18, 12, 13)
> data_matrix <- matrix(raw_data, byrow=TRUE, nrow=3)
> data_matrix
     [,1] [,2] [,3] [,4]
[1,]    7   13    9   12
[2,]   13   21   10   19
[3,]   11   18   12   13
> 
> 
> # giving names to the rows and columns of the data table : dimnames()
> dimnames(data_matrix) <- list("Class" = c("Class_1", "Class_2", "Class_3"), 
+                               "Score" = c("Score_H", "Score_M", "Score_L", "Fail"))
> 
> data_matrix
         Score
Class     Score_H Score_M Score_L Fail
  Class_1       7      13       9   12
  Class_2      13      21      10   19
  Class_3      11      18      12   13
> 
> 
> ## exploratory data analysis
> # marginal distribution : addmargins()
> addmargins(data_matrix)
         Score
Class     Score_H Score_M Score_L Fail Sum
  Class_1       7      13       9   12  41
  Class_2      13      21      10   19  63
  Class_3      11      18      12   13  54
  Sum          31      52      31   44 158
> 
> 
> # proportional distribution : prop.table()
> prop.table(data_matrix)
         Score
Class        Score_H    Score_M    Score_L       Fail
  Class_1 0.04430380 0.08227848 0.05696203 0.07594937
  Class_2 0.08227848 0.13291139 0.06329114 0.12025316
  Class_3 0.06962025 0.11392405 0.07594937 0.08227848
> 
> addmargins(prop.table(data_matrix))
         Score
Class        Score_H    Score_M    Score_L       Fail       Sum
  Class_1 0.04430380 0.08227848 0.05696203 0.07594937 0.2594937
  Class_2 0.08227848 0.13291139 0.06329114 0.12025316 0.3987342
  Class_3 0.06962025 0.11392405 0.07594937 0.08227848 0.3417722
  Sum     0.19620253 0.32911392 0.19620253 0.27848101 1.0000000
> 
> 
> # bar plot : barplot()
> barplot(t(data_matrix), beside=TRUE, legend=TRUE, 
+         ylim=c(0, 30), 
+         ylab="Observed frequencies in sample", 
+         main="Frequency of math score by class")
> 

 

 

 

 

 

다음으로 카이제곱 검정 및 통계량 indexing 방법입니다.

 

 

> 
> ## chisquared test : chisq.test()
> chisq.test(data_matrix)

	Pearson's Chi-squared test

data:  data_matrix
X-squared = 1.3859, df = 6, p-value = 0.9667

> 
> 
> # indexing statistics of chisq.test()
> chisq.test_output_2 <- chisq.test(data_matrix)
> 
> chisq.test_output_2$observed # observed frequency
         Score
Class     Score_H Score_M Score_L Fail
  Class_1       7      13       9   12
  Class_2      13      21      10   19
  Class_3      11      18      12   13
> chisq.test_output_2$expected # expected frequeycy
         Score
Class       Score_H  Score_M   Score_L     Fail
  Class_1  8.044304 13.49367  8.044304 11.41772
  Class_2 12.360759 20.73418 12.360759 17.54430
  Class_3 10.594937 17.77215 10.594937 15.03797
> chisq.test_output_2$residuals # residual between observed and expected frequecy
         Score
Class        Score_H     Score_M    Score_L       Fail
  Class_1 -0.3681990 -0.13439170  0.3369579  0.1723221
  Class_2  0.1818200  0.05837794 -0.6714739  0.3475383
  Class_3  0.1244439  0.05404747  0.4316649 -0.5255380
> 
> chisq.test_output_2$statistic # chi-squared statistics
X-squared 
 1.385926 
> chisq.test_output_2$parameter # degrees of freedom
df 
 6 
> chisq.test_output_2$p.value # P-value
[1] 0.966709

  

 

 

위 분석결과를 보면 P-value가 0.966709 로서 유의수준 α 0.05보다 크므로 귀무가설 H0를 채택하여 "학급과 수학성적 간에는 서로 관련성이 없다. 즉, 독립적이다"고 판단할 수 있겠습니다.

 

 

 

이상으로 독립성 검정(test of independence)을 카이제곱 검정 기법을 사용해서 하는 방법을 소개하였습니다.

 

 

 

 

다음번 포스팅에서는 (3) 동질성 검정(test of homegeneity)에 대해서 알아보도록 하겠습니다.

 

많은 도움이 되었기를 바랍니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡'를 꾸욱 눌러주세요. ^^

 

 

 

 

Posted by R Friend R_Friend

댓글을 달아 주세요

  1. Liam 2016.09.12 11:09 신고  댓글주소  수정/삭제  댓글쓰기

    안녕하세요? 또 질문드립니다.

    카이스퀘어 검정을 통해 독립성 검정을 하려고 하는데요.
    유저ID가 중복이라 어떻게 처리해야 할지 고민입니다.
    데이터셋의 컬럼을 단순화 시키면,
    유저ID (중복O), 사기여부(Y/N), 가입상품(A,B,C) 이렇게 있는데요.
    중복이 있는 상태로 검정을 하는 것은 아닌것 같고,
    그럼 Groupby 유저ID 다음에 가입상품을 DUMMIE로 처리하고 3번 카이스퀘어 검정을 할까 하는데
    이 방법이 맞나요? (

    • R Friend R_Friend 2016.09.12 11:41 신고  댓글주소  수정/삭제

      Liam님,
      중복제거하고 유일한 값만 남기는 건 아래 링크의 unique() 함수 참조하세요.

      http://rfriend.tistory.com/m/165

      duplicated()함수도 동일한 역할합니다. 아래 script 참고하세요.

      new_dataframe <- dataframe[!duplicated(dataframe$variable), ]

  2. Liam 2016.09.12 11:52 신고  댓글주소  수정/삭제  댓글쓰기

    답변 감사 드립니다~

  3. 황금모찌 2018.05.01 12:11 신고  댓글주소  수정/삭제  댓글쓰기

    글 내용이 알차네요. 좋은 글 감사합니다.

  4. 군옥수수 2019.07.23 00:37  댓글주소  수정/삭제  댓글쓰기

    안녕하세요 정말 많은 도움이 되었습니다

    궁금한게 있는데

    범주형 자료와 연속형 자료의 독립성 검정은 어떤 방법을 통해 할 수 있는지

    알 수 있을까요 ?

    감사합니다

    • R Friend R_Friend 2019.07.23 09:05 신고  댓글주소  수정/삭제

      설명변수가 범주형 자료이고 종속변수가 연속형일때, 2개 집단 간 평균 차이 검정은 t-test, 3개 이상 집단 간 평균 차이 검정은 ANOVA 사용합니다.
      https://rfriend.tistory.com/131 참고하세요.