이번 포스팅에서는 groupby() 를 사용할 때 


(1) pd.cut()으로 동일 길이로 나누어서 범주를 만든 후 GroupBy()로 그룹별 통계량 구하기

(2) pd.qcut()으로 동일 개수로 나누어서 범주를 만든 후 GroupBy()로 그룹별 통계량 구하기


를 해보겠습니다. 




먼저, 예제로 사용할 간단한 DataFrame을 만들어보겠습니다. 



import numpy as np

import pandas as pd

from pandas import DataFrame


np.random.seed(123)

df = DataFrame({'col_1': np.random.randint(20, size=20), 

                      'col_2': np.random.randn(20)})


df

col_1col_2
0131.730024
121.232650
22-0.823598
36-0.118201
417-0.576103
5191.695731
610-0.074394
71-1.900637
80-0.777655
9171.313462
10151.804458
119-0.965550
120-1.316480
1314-0.625785
140-0.326946
1515-0.308209
16190.827117
17141.070781
184-3.055577
1901.005932

 




  (1) pd.cut : 동일 길이로 나누어서 범주 만들기(equal-length buckets categorization)


'col_1' 칼럼에 대해서 4개의 동일한 길이로 범주를 만들어보겠습니다. 

카테고리의 구간이 [(-0.019, 4.75] < (4.75, 9.5] < (9.5, 14.25] < (14.25, 19.0]] 로서 4개의 각 구간의 길이가 동일함을 알 수 있습니다.



factor_col_1 = pd.cut(df.col_1, 4)

factor_col_1

0 (9.5, 14.25]

1     (-0.019, 4.75]
2     (-0.019, 4.75]
3        (4.75, 9.5]
4      (14.25, 19.0]
5      (14.25, 19.0]
6       (9.5, 14.25]
7     (-0.019, 4.75]
8     (-0.019, 4.75]
9      (14.25, 19.0]
10     (14.25, 19.0]
11       (4.75, 9.5]
12    (-0.019, 4.75]
13      (9.5, 14.25]
14    (-0.019, 4.75]
15     (14.25, 19.0]
16     (14.25, 19.0]
17      (9.5, 14.25]
18    (-0.019, 4.75]
19    (-0.019, 4.75]
Name: col_1, dtype: category
Categories (4, interval[float64]): [(-0.019, 4.75] < (4.75, 9.5] < (9.5, 14.25] < (14.25, 19.0]]



이제 'factor_col_1'이라는 'col_1' 칼럼에 대한 4개 구간의 범주를 GroupBy() 에 넣어서 각 범주의 그룹별로 agg() 함수로 개수(count), 평균(mean), 표준편차(std), 최소값(min), 최대값(max) 값을 계산해보겠습니다. 



grouped_col_1 = df.col_1.groupby(factor_col_1)

grouped_col_1.agg(['count', 'mean', 'std', 'min', 'max'])

countmeanstdminmax
col_1
(-0.019, 4.75]81.1251.45773804
(4.75, 9.5]27.5002.12132069
(9.5, 14.25]412.7501.8929691014
(14.25, 19.0]617.0001.7888541519



위와 동일한 결과를 아래 처럼 통계집계를 하는 사용자정의함수와 apply() 를 사용해서 구할 수도 있습니다. 


 

def summary_func(group):

    return {'count': group.count()

             'mean': group.mean()

             'std': group.std()

             'min': group.min()

             'max': group.max()}


grouped_col_1.apply(summary_func)

col_1                
(-0.019, 4.75]  count     8.000000
                max       4.000000
                mean      1.125000
                min       0.000000
                std       1.457738
(4.75, 9.5]     count     2.000000
                max       9.000000
                mean      7.500000
                min       6.000000
                std       2.121320
(9.5, 14.25]    count     4.000000
                max      14.000000
                mean     12.750000
                min      10.000000
                std       1.892969
(14.25, 19.0]   count     6.000000
                max      19.000000
                mean     17.000000
                min      15.000000
                std       1.788854
Name: col_1, dtype: float64




위의 결과를 좀더 보기에 좋도록 unstack()를 사용해서 길게(long) 제시된 결과를 옆으로 넓게(wide) 표형식으로 만들어보겠습니다. 



grouped_col_1.apply(summary_func).unstack()

countmaxmeanminstd
col_1
(-0.019, 4.75]8.04.01.1250.01.457738
(4.75, 9.5]2.09.07.5006.02.121320
(9.5, 14.25]4.014.012.75010.01.892969
(14.25, 19.0]6.019.017.00015.01.788854

 



위의 결과의 'count' 개수 부분을 보면 각 범주 구간  [(-0.019, 4.75] < (4.75, 9.5] < (9.5, 14.25] < (14.25, 19.0]] 그룹 별로 개수가 8개, 2개, 4개, 6개로서 각각 다릅니다. 이는 랜덤 숫자에 대해서 구간별 길이를 동일하게 했기 때문에 구간 그룹별 개수가 다르게 된 것입니다.


그러면, 다음으로 구간별 '동일한 개수(equal-size)'로 범주 바구니(bucket categorization)를 만들어보겠습니다.




  (2) pd.qcut() : 동일 개수로 나누어서 범주 만들기 (equal-size buckets categorization)


pd.qcut() 함수를 사용하여 'col_2'에 대해서 각 범주 바구니별로 동일하게 4개의 개수를 가지도록 범주를 만들어보겠습니다. 이때 labels=False 로 설정하여 label이 0, 1, 2, 3 이런 식으로 0부터 순차적으로 1씩 증가하게 하였습니다. 



bucket_qcut_col_2 = pd.qcut(df.col_2, 4, labels=False)

bucket_qcut_col_2

0     3
1     3
2     0
3     2
4     1
5     3
6     2
7     0
8     1
9     3
10    3
11    0
12    0
13    1
14    1
15    1
16    2
17    2
18    0
19    2
Name: col_2, dtype: int64




아래처럼 labels=np.arange(4, 0, -1)로 직접 지정을 해주면 label이 4, 3, 2, 1 이런식으로 4부터 1씩 줄어드는 순서로 할당이 됩니다. 위의 label 과 정 반대로 할당이 되었습니다. 



bucket_qcut_label_col_2 = pd.qcut(df.col_2, 4, labels=np.arange(4, 0, -1))

bucket_qcut_label_col_2

0     1
1     1
2     4
3     2
4     3
5     1
6     2
7     4
8     3
9     1
10    1
11    4
12    4
13    3
14    3
15    3
16    2
17    2
18    4
19    2
Name: col_2, dtype: category
Categories (4, int64): [4 < 3 < 2 < 1]




그럼 [4 < 3 < 2 < 1] 순서로 동일 개수로 나눈 4개의 그룹별 통계량을 계산해보겠습니다. 



grouped = df.col_2.groupby(bucket_qcut_label_col_2)

grouped.apply(summary_func).unstack()

countmaxmeanminstd
col_2
45.0-0.823598-1.612369-3.0555770.907474
35.0-0.308209-0.522940-0.7776550.201746
25.01.0707810.542247-0.1182010.589903
15.01.8044581.5552651.2326500.262163



'count' 개수가 4개의 각 그룹별로 모두 '5'로서 동일한 것을 알 수 있습니다. 


많은 도움이 되었기를 바랍니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,