텍스트 분석을 할 때 제일 처음 하는 일이 문서, 텍스트를 분석에 적합한 형태로 전처리 하는 일입니다. 

이번 포스팅에서는 (1) 텍스트 데이터를 Python의 string methods 를 이용하여 단어 단위로 파싱(parsing text at word-level) 한 후에, 단어별 index를 만들고, (2) 텍스트를 단어 단위로 one-hot encoding 을 해보겠습니다. 

one-hot encoding of text at a word-level

 

1. 텍스트 데이터를 Python string methods를 사용하여 단어 단위로 파싱하고,  단어별 token index 만들기

예제로 사용할 텍스트는 Wikipedia 에서 검색한 Python 영문 소개자료 입니다. 

python_wikipedia.txt
0.00MB

# import modules
import numpy as np
import os

# set directory
base_dir = '/Users/ihongdon/Documents/Python/dataset'
file_name = 'python_wikipedia.txt'
path = os.path.join(base_dir, file_name)

# open file and print it as an example
file_opened = open(path)
for line in file_opened.readlines():
    print(line)

Python programming language, from wikipedia


Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aims to help programmers write clear, logical code for small and large-scale projects.[26]


Python is dynamically typed and garbage-collected. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming. Python is often described as a "batteries included" language due to its comprehensive standard library.[27]


Python was conceived in the late 1980s as a successor to the ABC language. Python 2.0, released 2000, introduced features like list comprehensions and a garbage collection system capable of collecting reference cycles. Python 3.0, released 2008, was a major revision of the language that is not completely backward-compatible, and much Python 2 code does not run unmodified on Python 3. Due to concern about the amount of code written for Python 2, support for Python 2.7 (the last release in the 2.x series) was extended to 2020. Language developer Guido van Rossum shouldered sole responsibility for the project until July 2018 but now shares his leadership as a member of a five-person steering council.[28][29][30]


Python interpreters are available for many operating systems. A global community of programmers develops and maintains CPython, an open source[31] reference implementation. A non-profit organization, the Python Software Foundation, manages and directs resources for Python and CPython development.

 

아래는 Python string method를 사용해서 텍스트에서 단어를 파싱하고 전처리할 수 있는 사용자 정의 함수 예시입니다. 가령, 대문자를 소문자로 바꾸기, stop words 제거하기, 기호 제거하기, 숫자 제거하기 등을 차례대로 적용할 수 있는 기본적인 예시입니다. (이 역시 텍스트 분석용 Python module 에 잘 정의된 함수들 사용하면 되긴 합니다. ^^;) 

# UDF of word preprocessing
def word_preprocess(word):
    # lower case
    word = word.lower()
        
    # remove stop-words
    stop_words = ['a', 'an', 'the', 'in', 'with', 'to', 'for', 'from', 'of', 'at', 'on',
                  'until', 'by', 'and', 'but', 'is', 'are', 'was', 'were', 'it', 'that', 'this', 
                  'my', 'his', 'her', 'our', 'as', 'not'] # make your own list
    for stop_word in stop_words:
        if word != stop_word:
            word = word
        else:
            word = ''
    
    # remove symbols such as comma, period, etc.
    symbols = [',', '.', ':', '-', '+', '/', '*', '&', '%', '[', ']', '(', ')'] # make your own list
    for symbol in symbols:
        word = word.replace(symbol, '')
    
    # remove numbers
    if word.isnumeric():
        word = ''
    
    return word

 

다음으로, python_wikipedia.txt 파일을 열어서(open) 각 줄 단위로 읽고(readlines), 좌우 공백을 제거(strip)한 후에, 단어 단위로 분할(split) 하여, 위에서 정의한 word_preprocess() 사용자 정의 함수를 적용하여 전처리를 한 후, token_idx 사전에 단어를 Key로, Index를 Value로 저장합니다. 

# blank dictionary to store
token_idx = {}

# opening the file
file_opened = open(path)

# catching words and storing the index at token_idx dictionary
for line in file_opened.readlines():
    # strip leading and trailing edge spaces
    line = line.strip()
        
    # split the line into word with a space delimiter
    for word in line.split():
        
        word = word_preprocess(word) # UDF defined above
        
        # put word into token_index
        if word not in token_idx:
            if word != '':
                token_idx[word] = len(token_idx) + 1

 

단어를 Key, Index를 Value로 해서 생성된 token_idx Dictionary는 아래와 같습니다. 

token_idx
{'"batteries': 48,
 '1980s': 56,
 '2x': 87,
 'abc': 58,
 'about': 80,
 'aims': 28,
 'amount': 81,
 'approach': 27,
 'available': 104,
 'backwardcompatible': 74,
 'capable': 67,
 'clear': 32,
 'code': 18,
 
 .... 중간 생략 ....
 
 'successor': 57,
 'support': 83,
 'supports': 40,
 'system': 66,
 'systems': 107,
 'the': 84,
 'typed': 38,
 'unmodified': 78,
 'use': 22,
 'van': 10,
 'whitespace': 24,
 'wikipedia': 4,
 'write': 31,
 'written': 82}

 

token_idx.values()
dict_values([104, 96, 102, 112, 68, 111, 21, 18, 8, 15, 20, 47, 37, 16, 74, 89, 57, 117, 19, 93, 83, 76, 91, 43, 30, 32, 54, 33, 35, 98, 64, 80, 17, 34, 10, 61, 50, 46, 49, 23, 72, 67, 119, 95, 14, 3, 116, 81, 85, 1, 99, 51, 77, 38, 90, 118, 120, 100, 101, 9, 39, 12, 123, 84, 122, 69, 26, 115, 88, 13, 36, 60, 5, 6, 75, 103, 66, 94, 78, 97, 121, 55, 108, 109, 58, 4, 82, 41, 79, 87, 29, 106, 114, 113, 105, 73, 45, 71, 24, 2, 53, 31, 86, 11, 22, 42, 59, 7, 110, 40, 56, 70, 92, 28, 27, 48, 62, 44, 107, 65, 25, 52, 63])

 

총 123개의 단어가 있으며, 이 중에서 'python'이라는 단어는 token_idx에 '1' 번으로 등록이 되어있습니다. 

max(token_idx.values())
123
token_idx.get('python')
1

 

 

2. 텍스트를 단어 단위로 One-hot encoding 하기

하나의 텍스트 문장에서 고려할 단어의 최대 개수로 max_len = 40 을 설정하였습니다. (한 문장에서 41번째 부터 나오는 단어는 무시함). 그리고 One-hot encoding 한 결과를 저장할 빈 one_hot_encoded 다차원 배열을 np.zeros() 로 만들어두었습니다. 

# consider only the first max_length words in texts            
max_len = 40

# array to store the one_hot_encoded results
file_opened = open(path)

one_hot_encoded = np.zeros(shape=(len(file_opened.readlines()), 
                                  max_len, 
                                  max(token_idx.values())+1))

 

one_hot_encoded 는 (5, 40, 124) 의 다차원 배열입니다. 5개의 텍스트 문장으로 되어 있고, 40개의 최대 단어 길이(max_len) 만을 고려하며, 총 124개의 token index 에 대해서 해당 단어가 있으면 '1', 없으면 '0'으로 one-hot encoding을 하게 된다는 뜻입니다. 

one_hot_encoded.shape
(5, 40, 124)

 

아래는 파일을 열고 텍스트를 줄 별로 읽어 들인 후에, for loop 을 돌면서 각 줄에서 단어를 분할하고 전처리하여, token_idx.get(word) 를 사용해서 해당 단어(word)의 token index를 가져온 후, 해당 텍스트(i), 단어(j), token index(idx)에 '1'을 입력하여 one_hot_encoded 다차원 배열을 업데이트 합니다. 

file_opened = open(path)
for i, line in enumerate(file_opened.readlines()):
    # strip leading and trailing edge spaces
    line = line.strip()
    
    for j, word in list(enumerate(line.split()))[:max_len]:
        
        # preprocess the word
        word = word_preprocess(word)
        
        # put word into token_index
        if word != '':
            idx = token_idx.get(word)
            one_hot_encoded[i, j, idx] = 1.

 

이렇게 생성한 one_hot_encoded 다차원배열의 결과는 아래와 같습니다. 

one_hot_encoded
array([[[0., 1., 0., ..., 0., 0., 0.],
        [0., 0., 1., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        ...,
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]],

       [[0., 1., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        ...,
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]],

       [[0., 1., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        ...,
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]],

       [[0., 1., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        ...,
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]],

       [[0., 1., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        ...,
        [0., 0., 0., ..., 0., 0., 1.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]]])
type(one_hot_encoded)
numpy.ndarray

 

이해를 돕기 위하여 python_wikipedia.txt 파일의 첫번째 줄의, 앞에서 부터 40개 단어까지의 단어 중에서, token_idx 의 1번~10번 까지만 one-hot encoding이 어떻게 되었나를 단어와 token_idx 까지 설명을 추가하여 프린트해보았습니다. (말로 설명하려니 어렵네요. ㅜ_ㅜ) 

# sort token_idx dictionary by value
import operator
sorted_token_idx = sorted(token_idx.items(), key=operator.itemgetter(1))

# print out 10 words & token_idx of 1st text's 40 words as an example
for i in range(10):
    print('word & token_idx:', sorted_token_idx[i])
    print(one_hot_encoded[0, :, i+1])
word & token_idx: ('python', 1)
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('programming', 2)
[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('language', 3)
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('wikipedia', 4)
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('interpreted', 5)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('highlevel', 6)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('generalpurpose', 7)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('created', 8)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('guido', 9)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
word & token_idx: ('van', 10)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]


많은 도움이 되었기를 바랍니다. 

 

728x90
반응형
Posted by Rfriend
,