이번 포스팅에서는 PostgreSQL, Greenplum Database에서 여러개의 테이블을 Key 값을 기준으로 JOIN 구문을 사용하여 연결하는 다양한 방법을 소개하겠습니다. 그리고 두 테이블 내 관측치 간의 모든 가능한 조합을 반환해주는 CROSS JOIN 에 대해서도 마지막에 소개하겠습니다. (DB 종류에 상관없이 join SQL query는 거의 비슷합니다.)

 

(1) INNER JOIN

(2) LEFT JOIN

(3) RIGHT JOIN

(4) FULL JOIN

(5) 3개 이상 복수개의 테이블을 JOIN 으로 연결하기

(6) CROSS JOIN

 

 

joining two tables in postgresql

 

 

먼저 예제로 사용한 간단한 2개의 테이블을 만들어보겠습니다. 두 테이블을 연결할 수 있는 공통의 Key값으로서 'id'라는 이름의 칼럼을 두 테이블이 모두 가지고 있습니다. 

 

'tbl1' 과 'tbl2'는 Key 'id'를 기준으로 id = [2, 3, 4] 가 서로 동일하게 존재하며, 'tbl1'의 id = [1]은 'tbl1'에만 존재하고, 'tbl2'의 id = [5] 는 'tbl2'에만 존재합니다. 각 JOIN 방법 별로 결과가 어떻게 달라지는지 유심히 살펴보시기 바랍니다. 

 

-- Creating two sample tables

-- sample table 1
DROP TABLE IF EXISTS tbl1;
CREATE TABLE tbl1 (
	id int
	, x text
) DISTRIBUTED RANDOMLY;

INSERT INTO tbl1 VALUES (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd');

SELECT * FROM tbl1 ORDER BY id;
--id  x
--1	a
--2	b
--3	c
--4   d


-- sample table 2
DROP TABLE IF EXISTS tbl2;
CREATE TABLE tbl2 (
	id int
	, y text
) DISTRIBUTED RANDOMLY;

INSERT INTO tbl2 VALUES (2, 'e'), (3, 'f'), (4, 'g'), (5, 'h');

SELECT * FROM tbl2 ORDER BY id;
--id  y
--2	e
--3	f
--4	g
--5	h

 

 

(1) INNER JOIN 

INNER JOIN 은 두 테이블의 Key 값을 기준으로 교집합에 해당하는 값들만 반환합니다. 두 테이블에서 Key 값이 겹치지 않는 값들은 제거되었습니다. 

 

--------------
-- INNER JOIN
--------------

SELECT a.id, a.x, b.y
FROM tbl1 AS a 
INNER JOIN tbl2 AS b 
ON a.id = b.id;
--id x y
--2	b	e
--3	c	f
--4	d	g

 

 

 

(2) LEFT OUTER JOIN

LEFT OUTER JOIN 은 왼쪽 테이블을 기준으로 Key값이 서로 같은 오른쪽 테이블의 값들을 왼쪽 테이블에 연결해줍니다. 아래의 예에서는 왼쪽의 'tbl1'의 값들은 100% 모두 있고, LEFT OUTER JOIN 으로 연결해준 오른쪽 'tbl2' 테이블의 경우 id = [5] 의 값이 제거된 채 id = [2, 3, 4] 에 해당하는 값들만 'tbl1'과 연결이 되었습니다. 그리고 왼쪽 'tbl1'에는 있지만 오른쪽 'tbl2'에는 없는 id = [1] 에 해당하는 값의 경우 y = [NULL] 값을 반환하였습니다. 

 

-------------------
-- LEFT OUTER JOIN
-------------------

SELECT a.id, x, y
FROM tbl1 AS a 
LEFT OUTER JOIN tbl2 AS b 
ON a.id = b.id;
--id x y
--1	a	[NULL]
--2	b	e
--3	c	f
--4	d	g

 

 

 

(3) RIGHT OUTER JOIN

RIGHT OUTER JOIN 은 LEFT OUTER JOIN 과 정반대라고 생각하면 이해하기 쉽습니다. 이번에는 오른쪽 테이블을 기준으로 Key 값이 같은 왼쪽 테이블의 값을 오른쪽 테이블에 연결해줍니다. 

아래 RIGHT OUTER JOIN 예에서는 오른쪽 테이블은 'tbl2'는 100% 모두 있고, 왼쪽 테이블 'tbl1'의 경우 'tbl2'와 Key 값이 동일한 id = [2, 3, 4] 에 해당하는 값들만 'tbl2'에 연결이 되었습니다. 'tbl2'에만 존재하고 'tbl1'에는 없는 id = [5] 의 경우 'tbl1'의 'x' 칼럼 값은 [NULL] 값이 됩니다. 

 

--------------------
-- RIGHT OUTER JOIN
--------------------

SELECT a.id, x, y
FROM tbl1 AS a 
RIGHT OUTER JOIN tbl2 AS b 
ON a.id = b.id;
--id x y
--2	b	e
--3	c	f
--4	d	g
--5 [NULL]	h

 

 

 

(4) FULL JOIN

FULL JOIN은 양쪽 테이블 모두를 기준으로 Key 값이 같은 값들을 연결시켜 줍니다. 이때 한쪽 테이블에만 Key 값이 존재할 경우 다른쪽 테이블의 칼럼 값에는 [NULL] 값을 반환합니다. 

제일 위에 있는 도식화 그림을 참고하시면 위의 INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL JOIN에 대해서 좀더 이해하기 쉬울 거예요. 

 

---------------
-- FULL JOIN
---------------

SELECT a.id, x, y
FROM tbl1 AS a 
FULL JOIN tbl2 AS b
ON a.id = b.id;
--id x y
--1	a	[NULL]
--2	b	e
--3	c	f
--4	d	g
--5 [NULL] h

 

 

 

(5) 3개 이상의 복수개의 테이블을 JOIN 으로 연결하기

 

위의 (1)~(4) 는 2개의 테이블을 Key 값을 기준으로 JOIN 문으로 연결한 것이었습니다. 만약 3개 이상의 복수개의 테이블을 JOIN 으로 연결하고자 한다면 아래의 예처럼 JOIN 문과 연결 Key 값을 ON 으로 이어서 써주면 됩니다.

아래의 예는 'tbl1' 테이블을 기준으로 'tbl2', 'tbl3'를 'id' Key를 기준으로 LEFT OUTER JOIN 한 것입니다. 

 

--------------------------------------------------------
-- LEFT OUTER JOIN with Multiple Tables
--------------------------------------------------------

-- creating the 3rd table
DROP TABLE IF EXISTS tbl3;
CREATE TABLE tbl3 (
	id int
	, z text
) DISTRIBUTED RANDOMLY;

INSERT INTO tbl2 VALUES (2, 'i'), (4, 'j'), (6, 'k'), (8, 'l');
SELECT * FROM tbl3 ORDER BY id;
--id  z
--2	i
--4	j
--6	k
--7	l


-- LEFT OUTER JOIN with 3 tables
SELECT a.id, x, y
FROM tbl1 AS a 
LEFT OUTER JOIN tbl2 AS b 
	ON a.id = b.id
LEFT OUTER JOIN tbl3 AS c	
	ON a.id = c.id
ORDER BY a.id;
--id x y z
--1	a	[NULL] [NULL]
--2	b	e i
--3	c	f [NULL]
--4	d	g j

 

 

 

(6) CROSS JOIN

위의 (1)~(5)까지의 JOIN은 두 테이블에 동일하게 존재하는 Key값을 기준으로 두 테이블을 연결하여 주었다면, 이제 CROSS JOIN 은 두 테이블의 모든 값들 간의 조합을 반환하며, 이때 Key 값은 필요없습니다. 가령 왼쪽 테이블에 m 개의 행이 있고, 오른쪽 테이블에 n 개의 행이 있다면 두 테이블의 CROSS JOIN은 m * n 개의 조합(combination)을 반환합니다. 

 

실수로 행의 개수가 엄청나게 많은 두 테이블을 CROSS JOIN 하게 될 경우 시간도 오래 걸리고 자칫 memory full 나서 DB가 다운되는 경우도 있습니다.  따라서 CROSS JOIN 을 할 때는 지금 하려는 작업이 CROSS JOIN 요건이 맞는 것인지 꼭 한번 더 확인이 필요하며, 소요 시간이나 메모리가 여력이 되는지에 대해서도 먼저 가늠해볼 필요가 있습니다. 

 

----------------
-- CROSS JOIN
----------------

SELECT a.id AS id_a, a.x, b.id AS id_b, b.y
FROM tbl1 AS a 
CROSS JOIN tbl2 AS b
ORDER BY a.id, b.id;
--id_a x id_b y
--1	a	2	e
--1	a	3	f
--1	a	4	g
--1	a	5	h
--2	b	2	e
--2	b	3	f
--2	b	4	g
--2	b	5	h
--3	c	2	e
--3	c	3	f
--3	c	4	g
--3	c	5	h
--4	d	2	e
--4	d	3	f
--4	d	4	g
--4	d	5	h

 

 

이번 포스팅이 많은 도움이 되었기를 바랍니다. 

행복한 데이터 과학자 되세요!  :-)

 

728x90
반응형
Posted by Rfriend
,

빅데이터 환경에서 사이즈가 어마무시하게 큰 테이블 간 JOIN은 부하가 매우 크므로 되도록이면 데이터 스키마 설계를 할 때 JOIN을 하지 않고도 분석을 할 수 있도록 요건을 반영하곤 합니다. ARRAY, MAP, STRUCT 등의 컬렉션 데이터형이 정규화를 깨더라도 빅데이터 환경에서 사용되는 이유입니다.

 

하지만, 아무리 스키마 설계를 잘 한다고 해도 분석이 복잡해지면 JOIN을 안하고 모든 것을 처리하기가 힘든 것도 사실입니다.

 

이번 포스팅에서는 두 개 이상의 테이블을 좌, 우로 서로 연결해서 분석할 때 사용하는 Hive 조인 문으로

 

 - INNER JOIN

 - LEFT OUTER JOIN

 - RIGHT OUTER JOIN

 - FULL OUER JOIN

 - CROSS JOIN(CARTESIAN PRODUCT JOIN)

 - MAP-SIDE JOIN  과

 

두 개 이상의 테이블을 상, 하로 서로 붙여서 분석할 때 사용하는

 - UNION ALL

 

문에 대해서 알아보겠습니다.

 

기존에 관계형 DB를 사용했던 분이라면 아마 쉽게 이해할 수 있을 내용들입니다.

 

 

  • 내부 조인 (INNER JOIN)

 

[쿼리 예시]


SELECT a.var1, a.var2, b.var2
    FROM mytable_1 a JOIN mytable_2 b 
    ON a.var1 = b.var1 -- EQUI-JOIN 만 가능하며, NON-EQUI JOIN은 불가
    WHERE a.prd_cd = 'ABC' AND b.prd_cd = 'DEF';

 


SELECT a.var1, a.var2, a.var3, b.var4
    FROM mytable_1 a JOIN mytable_2 b 
    ON a.var1 = b.var1 AND a.var2 = b.var2 -- 2 JOIN keys
    WHERE a.prd_cd = 'ABC';

 

   

SELECT a.var1, a.var2, b.var3, c.var4
    FROM mytable_1 a JOIN mytable_1 b ON a.var1 = b.var1
                            JOIN mytable_1 c ON a.var1 = c.var1
    WHERE (a.prd_cd = 'ABC' AND b.prd_cd = 'DEF')

              AND (c.prd_cd = 'GHI');

 

 

 

 

  • 왼쪽 세미 조인 (LEFT SEMI-JOIN)

--   : 오른쪽 테이블에서 ON의 술어를 만족하는 레코드를 찾으면 왼쪽 테이블의 레코드를 반환

--   : 내부 조인(INNER JOIN)을 최적화한 특수한 형태로, 내부 조인보다 빠름

--   : 왼쪽 세미 조인만 지원하며, 오른쪽 세미 조인은 미지원

 

SELECT a.var1, a.var2, a.var3
    FROM mytable_1 a LEFT SEMI JOIN mytable_2 b 
    ON a.var1 = b.var1 AND a.var2 = b.var2;

 

 

 

  • 왼쪽 외부 조인 (LEFT OUTER JOIN)

 

[ 쿼리 예시 ]

 

SELECT a.var1, a.var2, a.var3, b.var4
    FROM mytable_1 a LEFT OUTER JOIN mytable_2 b 
    ON a.var1 = b.var1 AND a.var2 = b.var2
    WHERE a.prd_cd = 'ABC';

 

 

 

  • 오른쪽 외부 조인 (RIGHT OUTER JOIN)

 

[ 쿼리 예시 ]

 

SELECT a.var1, a.var2, a.var3, b.var4
    FROM mytable_1 a RIGHT OUTER JOIN mytable_2 b 
    ON a.var1 = b.var1 AND a.var2 = b.var2
    WHERE a.prd_cd = 'ABC';

 

 

 

  • 완전 외부 조인 (FULL OUTER JOIN)

 

[ 쿼리 예시 ]

 

SELECT a.var1, a.var2, a.var3, b.var4
    FROM mytable_1 a FULL OUTER JOIN mytable_2 b 
    ON a.var1 = b.var1 AND a.var2 = b.var2
    WHERE a.prd_cd = 'ABC';

 

 

 

  • 교차 조인 (CROSS JOIN (CARTESIAN PRODUCT JOIN))

 

[ 쿼리 예시]

 

SELECT * FROM mytable_1 JOIN mytable_2;

 

 

쿼리 문이 JOIN 문 중에서 제일 간단합니다.  그런데 속도는 제일 느리고 또 위험하기도 합니다. ^^;

 

A*B 개의 ROW를 반환(가령 A 테이블이 100개 row, B 테이블이 1000개 row를 가지고 있다면 A JOIN B 는 100 * 1,000 = 100,000 개 row 출력)하므로 출력량도 제일 많습니다. 뿐만 아니라 다른 JOIN문과 달리 CORSS JOIN (CARTESIAN PRODUCT JOIN)은 병렬처리도 안되므로 느리기까지 합니다.

 

SELECT 문을 가지고 시스템을 다운시키기가 쉽지 않은데요, SELECT 문으로 혹시 HIVE가 다운되거나 성능이 현격히 저하되었다면 JOIN 걸 때 ON, WHERE 절을 빼먹고 CROSS JOIN (Cartesian Product JOIN)을 실수로 쿼리를 날린게 아닌가 하고 범인 후보로 의심을 해볼 수 있습니다.

 

CROSS JOIN 걸 때는 '내가 원하는 output/분석 목적이 CROSS JOIN 맞나?'를 재차 확인하고 쿼리를 날리기 바랍니다.  특히 'BIG~ 데이터' 환경에서는 말이지요.

 

 

 

  • Map-Side JOIN

 

[ 쿼리 예시 ]

 

hive> set hive.auto.convert.join=true; -- default is false

 

SELECT a.var1, a.var2, a.var3, b.var4
    FROM mytable_1 a JOIN mytable_2 b -- 큰 테이블은 왼쪽, 크기가 작은 테이블은 오른쪽!
    ON a.var1 = b.var1 AND a.var2 = b.var2
    WHERE a.prd_cd = 'ABC';

 

 

 

맵 사이드 조인을 하려면 먼저 set hive.auto.convert.join=true; 로 설정을 바꿔줘야 합니다.

맵 사이드 조인은 이름에서 알 수 있는 것처럼, 크기가 작은 테이블을 메모리에 캐시하고, 큰 테이블은 맵퍼로 보내 후에, 캐시한 작은 테이블로부터 일치하는 모든 것을 찾아낼 수 있기 때문에 맵에서 모든 조인을 할 수 있습니다. 

  => 일반 JOIN 과 달리 리듀스 단계를 건너뛸 수 있어서 속도가 빠른 장점이 있습니다. 성능 최적화를 위해 알아두면 좋은 JOIN 방법입니다.  

 

 

이상으로 JOIN 문을 마칩니다.

 


 

 

두 개 이상의 테이블을 합칠 때 사용하는 UNION ALL 입니다.

  • UNION ALL

 

-- 두 개 이상의 테이블을 위, 아래로 합치기
-- subquery 는 같은 수의 칼럼, 각 칼럼의 Data Type 동일해야 함

 

[ 쿼리 예시 ]

 

SELECT a.var1, a.var2, a.var3
    FROM (
        SELECT a1.var1, a1.var2, a1.var3, 'A1' as source
        FROM mytable a1
    UNION ALL
        SELECT a2.var1, a2.var2, a2.var3, 'A2' as source
        FROM mytable a2
    ) a
SORT BY a.var1 ASC, a.var2 DESC;

 

 

이상으로 HIVE에서 테이블 연결하거나 합쳐서 분석할 때 사용하는 JOIN문, UNION ALL에 대해서 알아보았습니다.

 

다음번 포스팅에서는 하이브 뷰(VIEW)에 대해서 알아보겠습니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡'를 꾸욱 눌러주세요.

 

 

728x90
반응형
Posted by Rfriend
,