지난번 포스팅에서는 하나의 그룹, 하나의 변수에 대한 히스토그램, 커널밀도곡선을 그리는 방법을 소개하였습니다. 


이번 포스팅에서는

(1) 여러개의 그룹에 대한 히스토그램, 커널밀도곡선 그리기

(2) 여러개의 변수에 대한 히스토그램, 커널밀도곡선 그리기

에 대해서 알아보겠습니다. 



먼저, matlplotlib.pyplot, seaborn 패키지를 importing하고, 예제로 사용할 iris 데이터셋을 불러오겠습니다. 



import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns


# loading 'iris' dataset

iris = sns.load_dataset('iris')

iris.shape

(150, 5)


iris.head()

sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa

 

iris.groupby('species').size()

species
setosa        50
versicolor    50
virginica     50
dtype: int64




iris는 붓꽃인데요, 아래처럼 versicolor, setosa, virginica의 3개 종(species) 그룹별로 각 50개씩 꽃잎 길이와 넓이, 꽃받침 길이와 넓이의 4개 변수를 측정한 데이터셋입니다. 


* image source: https://www.datacamp.com/community/tutorials/machine-learning-in-r



  (1) 여러개 그룹의 히스토그램, 커널밀도곡선 그리기


petal_length 변수에 대해서 setosa, versicolor, virginica 종의 3개 그룹(groups)의 히스토그램과 커널밀도곡선을 그룹별로 색깔을 다르게 하여 그려보겠습니다. 



# 1-1. Multiple histograms on the same axis

sns.distplot(iris[iris.species == "setosa"]["petal_length"], 

             color="blue", label="setosa")


sns.distplot(iris[iris.species == "versicolor"]["petal_length"], 

             color="red", label="versicolor")


sns.distplot(iris[iris.species == "virginica"]["petal_length"], 

             color="green", label="virginica")


plt.legend(title="Species")

plt.show()


 




만약 그룹 개수가 많아서 위에서처럼 일일이 코딩하기가 시간이 오래걸리고 반복되는 코드가 길게 늘어서는게 싫다면 아래처럼 for loop 을 사용해주면 됩니다. 


그래프의 제목, X축 이름, Y축 이름, 범례 이름을 설정하는 방법도 같이 소개합니다. 



# 1-2. Via for loop

grp_col_dict = {'setosa': 'blue', 

                    'versicolor': 'red', 

                    'virginica': 'green'}


# for loop of species group

for group in grp_col_dict:

    

    # subset of group

    subset = iris[iris['species'] == group]

    

    # histogram and kernel density curve

    sns.distplot(subset['petal_length'], 

                    hist = True, # histogram

                    kde = True,  # density curve

                    kde_kws = {'linewidth': 2}, 

                    color = grp_col_dict[group],

                    label = group)


# setting plot format

plt.title('Histogram & Density Plot by Groups')

plt.xlabel('Petal Length(unit:cm)')

plt.ylabel('Density')

plt.legend(prop={'size': 12}, title = 'Group')

plt.show()




  (2) 여러개 변수의 히스토그램, 커널밀도곡선 그리기


이번에는 sepal_width, sepal_length, petal_width, petal_length 의 4개 변수(variable)에 대해서 히스토그램과 커널밀도곡선을 그려보겠습니다. (단, 종(species)의 구분없이 전체 사용)


for loop 을 사용하였는데요, 위의 그룹 indexing 과 이번의 변수 indexing 부분이 다르다는 점 유심히 살펴보시기 바랍니다. 



# 2-1. Multiple histograms on the same axis

var_color_dict = {'sepal_length': 'blue', 

                      'sepal_width': 'red', 

                      'petal_length': 'yellow', 

                      'petal_width': 'green'}


# for loop

for var in var_color_dict:

    sns.distplot(iris[var],                  

                    color = var_color_dict[var], 

                    hist_kws = {'edgecolor': 'gray'}, 

                    label = var)


plt.legend(title = 'Variables')

plt.show()





위의 (2-1) 그래프는 1개의 window에 동일한 축을 사용하여 4개 변수의 히스토그램과 밀도곡선을 그리다보니 중첩이 되면서 좀 헷갈리고 보기에 어려운 점이 있습니다. 


이런 경우에 그래프를 각 변수별로 분리해서 4개의 window subplots에 하나씩 그려서 비교하는 것도 좋은 방법입니다. ax=axes[0, 0] 은 좌상, ax=axes[0, 1]은 우상, ax=axes[1, 0]은 좌하, ax=axes[1, 1]은 우하 위치의 subplot 입니다. 



# 2-2. Multiple histograms at separate windows

f, axes = plt.subplots(2, 2, figsize=(8, 6), sharex=True)

sns.distplot(iris["sepal_length"], color="blue", ax=axes[0, 0])

sns.distplot(iris["sepal_width"], color="red", ax=axes[0, 1])

sns.distplot(iris["petal_length"], color="yellow", ax=axes[1, 0])

sns.distplot(iris["petal_width"], color="green", ax=axes[1, 1])

plt.show()





for loop을 사용해서 그리려면 아래 코드를 참고하세요. 



var_color_dict = {'sepal_length': 'blue', 

                      'sepal_width': 'red', 

                      'petal_length': 'yellow', 

                      'petal_width': 'green'}


i = [0, 0, 1, 1]

j = [0, 1, 0, 1]


# for loop

f, axes = plt.subplots(2, 2, figsize=(8, 6), sharex=True)

for var, i, j in zip(var_color_dict, i, j):

    sns.distplot(iris[var],                  

                    color = var_color_dict[var],

                    ax = axes[i, j])

    

plt.show()



많은 도움이 되었기를 바랍니다. 


이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요.  :-)



728x90
반응형
Posted by Rfriend
,