> # Backward Elimination Approach > # remove 'concave.points_se' variable > glm.fit.2 <- glm(Y ~ concave.points_mean + area_worst + + perimeter_se + smoothness_worst + symmetry_worst + + texture_mean + smoothness_mean + symmetry_mean + + fractal_dimension_worst + compactness_se + concavity_se, + data = wdbc_12, + family = binomial(link = "logit"), + subset = train) Warning message: glm.fit: 적합된 확률값들이 0 또는 1 입니다 > > summary(glm.fit.2)
Call: glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + symmetry_mean + fractal_dimension_worst + compactness_se + concavity_se, family = binomial(link = "logit"), data = wdbc_12, subset = train)
Deviance Residuals: Min 1Q Median 3Q Max -1.8363 -0.0645 -0.0076 0.0001 3.8297
Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -37.182194 8.981711 -4.140 0.0000348 *** concave.points_mean 87.773808 37.117336 2.365 0.018041 * area_worst 0.013785 0.003734 3.692 0.000222 *** perimeter_se 0.894502 0.747623 1.196 0.231517 smoothness_worst 104.169968 35.281001 2.953 0.003151 ** symmetry_worst 15.057387 10.048439 1.498 0.134009 texture_mean 0.385946 0.105254 3.667 0.000246 *** smoothness_mean -103.800173 73.953483 -1.404 0.160442 symmetry_mean 10.952803 26.586484 0.412 0.680362 fractal_dimension_worst 42.376803 42.322307 1.001 0.316688 compactness_se -98.379602 35.688499 -2.757 0.005840 ** concavity_se 18.847381 13.973683 1.349 0.177409 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 601.380 on 454 degrees of freedom Residual deviance: 60.551 on 443 degrees of freedom AIC: 84.551
Number of Fisher Scoring iterations: 10
> > # remove 'symmetry_mean' variable > glm.fit.3 <- glm(Y ~ concave.points_mean + area_worst + + perimeter_se + smoothness_worst + symmetry_worst + + texture_mean + smoothness_mean + + fractal_dimension_worst + compactness_se + concavity_se, + data = wdbc_12, + family = binomial(link = "logit"), + subset = train) Warning message: glm.fit: 적합된 확률값들이 0 또는 1 입니다 > > summary(glm.fit.3)
Call: glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + fractal_dimension_worst + compactness_se + concavity_se, family = binomial(link = "logit"), data = wdbc_12, subset = train)
Deviance Residuals: Min 1Q Median 3Q Max -1.7842 -0.0630 -0.0083 0.0001 3.7588
Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -36.121685 8.504448 -4.247 0.0000216 *** concave.points_mean 89.488263 37.243081 2.403 0.016269 * area_worst 0.013329 0.003532 3.774 0.000161 *** perimeter_se 0.976273 0.722740 1.351 0.176762 smoothness_worst 100.865240 33.783402 2.986 0.002830 ** symmetry_worst 17.885605 7.503047 2.384 0.017136 * texture_mean 0.382870 0.103885 3.686 0.000228 *** smoothness_mean -95.335007 70.234774 -1.357 0.174662 fractal_dimension_worst 40.176580 41.722080 0.963 0.335569 compactness_se -97.950160 35.684347 -2.745 0.006053 ** concavity_se 19.800333 13.655596 1.450 0.147064 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 601.380 on 454 degrees of freedom Residual deviance: 60.721 on 444 degrees of freedom AIC: 82.721
Number of Fisher Scoring iterations: 10
> > # remove 'fractal_dimension_worst' variable > glm.fit.4 <- glm(Y ~ concave.points_mean + area_worst + + perimeter_se + smoothness_worst + symmetry_worst + + texture_mean + smoothness_mean + + compactness_se + concavity_se, + data = wdbc_12, + family = binomial(link = "logit"), + subset = train) Warning message: glm.fit: 적합된 확률값들이 0 또는 1 입니다 > > summary(glm.fit.4)
Call: glm(formula = Y ~ concave.points_mean + area_worst + perimeter_se + smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + compactness_se + concavity_se, family = binomial(link = "logit"), data = wdbc_12, subset = train)
Deviance Residuals: Min 1Q Median 3Q Max -1.6650 -0.0653 -0.0079 0.0001 3.9170
Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -33.656002 7.809704 -4.310 0.0000164 *** concave.points_mean 96.137001 36.867939 2.608 0.009118 ** area_worst 0.012905 0.003435 3.757 0.000172 *** perimeter_se 0.676729 0.642490 1.053 0.292208 smoothness_worst 109.530724 32.239695 3.397 0.000680 *** symmetry_worst 19.724732 7.543696 2.615 0.008930 ** texture_mean 0.381544 0.103567 3.684 0.000230 *** smoothness_mean -101.037553 70.839248 -1.426 0.153784 compactness_se -80.383972 30.461425 -2.639 0.008318 ** concavity_se 20.771502 14.372162 1.445 0.148385 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 601.380 on 454 degrees of freedom Residual deviance: 61.657 on 445 degrees of freedom AIC: 81.657
Number of Fisher Scoring iterations: 10
> > # remove 'perimeter_se' variable > glm.fit.5 <- glm(Y ~ concave.points_mean + area_worst + smoothness_worst + + symmetry_worst + texture_mean + smoothness_mean + + compactness_se + concavity_se, + data = wdbc_12, + family = binomial(link = "logit"), + subset = train) Warning message: glm.fit: 적합된 확률값들이 0 또는 1 입니다 > > summary(glm.fit.5)
Call: glm(formula = Y ~ concave.points_mean + area_worst + smoothness_worst + symmetry_worst + texture_mean + smoothness_mean + compactness_se + concavity_se, family = binomial(link = "logit"), data = wdbc_12, subset = train)
Deviance Residuals: Min 1Q Median 3Q Max -1.7487 -0.0602 -0.0079 0.0002 4.2383
Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -33.156014 7.674110 -4.321 0.0000156 *** concave.points_mean 98.900172 35.529247 2.784 0.00538 ** area_worst 0.013819 0.003339 4.139 0.0000349 *** smoothness_worst 105.448378 32.444984 3.250 0.00115 ** symmetry_worst 17.412883 6.654537 2.617 0.00888 ** texture_mean 0.385751 0.102180 3.775 0.00016 *** smoothness_mean -89.410469 70.307291 -1.272 0.20348 compactness_se -78.009472 29.946520 -2.605 0.00919 ** concavity_se 24.607453 13.153360 1.871 0.06137 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 601.380 on 454 degrees of freedom Residual deviance: 62.777 on 446 degrees of freedom AIC: 80.777
Number of Fisher Scoring iterations: 10
> > # remove 'smoothness_mean' variable > glm.fit.6 <- glm(Y ~ concave.points_mean + area_worst + smoothness_worst + + symmetry_worst + texture_mean + + compactness_se + concavity_se, + data = wdbc_12, + family = binomial(link = "logit"), + subset = train) Warning message: glm.fit: 적합된 확률값들이 0 또는 1 입니다 > > summary(glm.fit.6)
Call: glm(formula = Y ~ concave.points_mean + area_worst + smoothness_worst + symmetry_worst + texture_mean + compactness_se + concavity_se, family = binomial(link = "logit"), data = wdbc_12, subset = train)
Deviance Residuals: Min 1Q Median 3Q Max -1.8607 -0.0640 -0.0080 0.0002 4.0912
Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -39.164619 6.748646 -5.803 0.0000000065 *** concave.points_mean 73.504634 27.154772 2.707 0.006792 ** area_worst 0.015465 0.003248 4.762 0.0000019175 *** smoothness_worst 78.962941 23.746808 3.325 0.000884 *** symmetry_worst 17.429475 6.497808 2.682 0.007310 ** texture_mean 0.423250 0.099815 4.240 0.0000223171 *** compactness_se -79.556564 29.747330 -2.674 0.007486 ** concavity_se 27.279384 12.093534 2.256 0.024089 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 601.380 on 454 degrees of freedom Residual deviance: 64.446 on 447 degrees of freedom AIC: 80.446
Number of Fisher Scoring iterations: 10 |