이번 포스팅에서는 Python pandas의 DataFrame에서 문자열 변수들을 가지고 일부 포맷 변형을 한 후에 새로운 변수를 만드는 방법을 소개하겠습니다. 이게 얼핏 생각하면 쉬울 것 같은데요, 또 한번도 본적이 없으면 어렵습니다. ^^; lambda, apply() 함수와 문자열 처리 메소드 등에 대해서 알고 있으면 이해가 쉽습니다. 



(1) 'id' 변수가 전체 5개 자리가 되도록 왼쪽에 비어있는 부분에 '0'을 채워서 새로운 변수 'id_2' 만들기

    (Left padding with zeros so that make 5 positions)


(2) 새로 만든 'id_2' 변수와 'name' 변수를 각 원소별로 합쳐서 데이터프레임 안에 새로운 변수 'id_name' 만들기

    (element-wise string concatenation with multiple inputs array in pandas DataFrame)






먼저, 예제로 사용할 간단한 DataFrame을 만들어보겠습니다. 


 

In [1]: import pandas as pd


In [2]: df = pd.DataFrame({'id': [1, 2, 10, 20, 100, 200], 

   ...:                    'name': ['aaa', 'bbb', 'ccc', 'ddd', 'eee', 'fff']})


In [3]: df

Out[3]: 

    id name

0    1  aaa

1    2  bbb

2   10  ccc

3   20  ddd

4  100  eee

5  200  fff





  (1) 'id' 변수가 전체 5개 자리가 되도록 왼쪽에 비어있는 부분에 '0'을 채워서 새로운 변수 'id_2' 만들기

     (Left padding with zeros so that make 5 positions)


lambda 로 format() 함수를 만들어서 apply() 로 적용을 하여 5자리 중에서 빈 자리를 '0'으로 채웠습니다.



In [4]: df['id_2'] = df['id'].apply(lambda x: "{:0>5d}".format(x))


In [5]: df

Out[5]: 

    id      name   id_2

0      1   aaa      00001

1      2   bbb     00002

2    10   ccc     00010

3    20  ddd    00020

4  100  eee     00100

5  200  fff      00200



다양한 숫자 포맷(number format) 함수는 https://mkaz.blog/code/python-string-format-cookbook/ 를 참고하세요. 




 (2) 새로 만든 'id_2' 변수와 'name' 변수를 각 원소별로 합쳐서 데이터프레임 안에

새로운 변수 'id_name' 만들기

    (element-wise string concatenation with multiple inputs array in pandas DataFrame)


그리고 역시 lambda 로 '_'를 중간 구분자로 해서 두 변수의 문자열을 결합('_'.join)하는 함수를 정의한 후에 apply() 로 적용하였습니다, 'axis = 1'을 설정해준 점 주의하시기 바랍니다. 


 

In [6]: df['id_name'] = df[['id_2', 'name']].apply(lambda x: '_'.join(x), axis=1)


In [7]: df

Out[7]: 

       id    name   id_2         id_name

0      1    aaa      00001    00001_aaa

1      2    bbb     00002    00002_bbb

2    10    ccc     00010     00010_ccc

3    20   ddd    00020    00020_ddd

4  100   eee    00100     00100_eee

5  200   fff     00200     00200_fff 





여기서 끝내면 좀 허전하고 아쉬우니 몇 가지 데이터 포맷 변경을 더 해보겠습니다.



(3) 'id' 변수의 값을 소숫점 두번째 자리까지 나타내는 새로운 변수 'id_3' 만들기


(4) 'name' 변수의 문자열을 전부 대문자로 바꾼 새로운 변수 'name_3' 만들기


(5) 데이터프레임 안의 'id_3'와 'name_3' 변수를 합쳐서 새로운 변수 'id_name_3' 만들기



(3) 'id' 변수의 값을 소숫점 두번째 자리까지 나타내는 새로운 변수 'id_3' 만들기


"{:.2f}".format() 함수를 사용하여 소숫점 두번째 자리까지 표현하였습니다. 



In [8]: df['id_3'] = df['id'].apply(lambda x: "{:.2f}".format(x))


In [9]: df





  (4) 'name' 변수의 문자열을 전부 대문자로 바꾼 새로운 변수 'name_3' 만들기


upper() 문자열 내장 메소드를 사용하여 소문자를 대문자로 변경하였습니다. 



In [10]: df['name_3'] = df['name'].apply(lambda x: x.upper())


In [11]: df

 




  (5) 데이터프레임 안의 'id_3'와 'name_3' 변수를 합쳐서 새로운 변수 'id_name_3' 만들기



In [14]: df['id_name_3'] = df[['id_3', 'name_3']].apply(lambda x: ':'.join(x), axis=1)


In [15]: df

 



많은 도움이 되었기를 바랍니다. 

728x90
반응형
Posted by Rfriend
,