이전 포스팅에서 Python으로 JSON 데이터 읽고 쓰기, XML 데이터 읽고 쓰기에 대해서 소개한 적이 있습니다.  이번 포스팅에서는 Python의 PyYAML 라이브러리를 이용하여 YAML 파일을 파싱하여 파이썬 객체로 읽어오기, Python 객체를 YAML 파일로 쓰는 방법을 소개하겠습니다. 



YAML에 대한 Wikipedia의 소개를 먼저 살펴보겠습니다. 

YAML 은 "YAML Ain't Markup Language" 의 반복적인 약어(recursive acronym)로서, 인간이 읽을 수 있는 데이터 직렬화 언어(human-readable data-serialization language) 입니다. YAML 은 데이터가 저장되거나 전송되는 구성 파일(configuration file)과 애플리케이션에서 종종 사용됩니다. YAML은 XML 과 동일한 커뮤니케이션 애플리케이션을 대상으로 하지만 최소한의 구문을 가지고 있습니다. 

* source: https://en.wikipedia.org/wiki/YAML


아래는 데이터가 저장되거나 전송되는 구성파일을 XML과 JSON, YAML으로 나타내서 비교한 예입니다. Python 들여쓰기(indentation) 형태로 해서 XML 이나 JSON 대비 Syntax 가 매우 간소해졌음을 알 수 있습니다. 




Python 에서 YAML 파일을 파싱하거나, 반대로 Python 객체를 YAML 파일로 내보낼 때는 PyYAML 라이브러리 (PyYAML is YAML parser and emitter for python)를 사용합니다. 이전에 XML이나 JSON을 다루었을 때와 PyYAML 라이브러리의 load(), dump() 함수 사용법은 비슷합니다. 





먼저, PyYAML 라이브러리가 설치되어 있지 않다면 명령 프롬프트에서 pip로 설치를 해주면 됩니다. 




  (1) YAML 파일을 파싱해서 Python 객체로 읽어오기: yaml.load()


예제로 사용한 YAML 파일은 아래처럼 'Vegetables' 키에 'Pepper', 'Tamato', 'Garlic' 을 값으로 가지는 YAML 파일(vegetables.yml)입니다. (Notepad++ 에디터에서 파일 형식을 YAML로 해서 작성하면 들여쓰기를 알아서 맞추어 줍니다. PyCharm 같은 프로그래밍 에디터를 사용해도 편리합니다.)



vegetables.yml


with open() 으로 'vegetables.yml' YAML 파일을 연 후에, yaml.load() 함수로 YAML 파일을 파싱하여 vegetables 라는 이름의 Python 객체로 저장하였습니다. Python 객체를 인쇄해보면 Key, Value (list) 로 구성된 Dictionary 로 YAML 파일을 파싱했음을 알 수 있습니다. 



import yaml


with open('vegetables.yml') as f:

    vegetables = yaml.load(f, Loader=yaml.FullLoader)

    print(vegetables)

 

{'Vegetables': ['Pepper', 'Tomato', 'Garlic']}




아래와 같이 Kubernetes의 deployment-definition.yaml 처럼 조금 복잡한 YAML 파일을 PyYAML 로 파싱해보면 List와 Nested Dictionary 로 구성된 Dictionary로 파싱합니다. 



k8s_deployment_yaml.yml




import yaml


with open('deployment-definition.yml') as f:

    deployment_def = yaml.load(f, Loader=yaml.FullLoader)


deployment_def

{'apiVersion': 'apps/v1',
 'kind': 'Deployment',
 'metadata': {'name': 'frontend',
  'labels': {'app': 'mywebsite', 'tier': 'frontend'}},
 'spec': {'replicas': 3,
  'template': {'metadata': {'name': 'myapp-pod', 'labels': {'app': 'myapp'}},
   'spec': {'containers': [{'name': 'nginx', 'image': 'nginx'}]}},
  'selector': {'matchLabels': {'app': 'myapp'}}}}





  (2) 여러개의 YAML 문서들을 파싱하여 읽어오기 : yaml.load_all()


YAML 문서를 구분할 때는 '---' 를 사용합니다. 아래는 'Fruits'와 'Vegetables' 의 두개의 YAML 문서를 '---'로 구분해서 하나의 YAML 파일로 만든 것입니다. 



예제 파일:

fruit-vegetable.yml



위의 (1)번에서는 1개의 YAML 문서를 yaml.load() 함수로 Python으로 읽어왔었다면, 이번의 (2)번에서는 '---'로 구분되어 있는 여러개의 YAML 문서를 yaml.load_all() 함수를 사용해서 Python 객체로 파싱하여 읽어오겠습니다. 



import yaml


with open('fruit-vegetable.yml') as f:

    

    fruits_vegetables = yaml.load_all(f, Loader=yaml.FullLoader)

    

    for fruit_vegetable in fruits_vegetables:

        print(fruit_vegetable)

 

{'Fruits': ['Blueberry', 'Apple', 'Orange']}
{'Vegetables': ['Pepper', 'Tomato', 'Garlic']}




  (3) 읽어온 YAML 파일을 정렬하기


아래와 같이 자동차 브랜드, 가격 쌍으로 이우러진 cars.yml YAML 파일을 Python 객체로 파싱해서 읽어올 때 Key 기준, Value 기준으로 각각 정렬을 해보겠습니다. (Dictionary 정렬 방법 사용)



cars.yml


(3-1) 읽어온 YAML 파일을 Key 기준으로 정렬하기 (sorting by Key)

    : 방법 1) yaml.dump(object, sort_keys=True) 



import yaml


with open('cars.yml') as f:

    

    cars_original = yaml.load(f, Loader=yaml.FullLoader)

    print(cars_original)

    

    print("---------------------")

    

    # sorting by Key

    cars_sorted = yaml.dump(cars_original, sort_keys=True)

    print(cars_sorted)

 

{'hyundai': 45000, 'tesla': 65000, 'chevrolet': 42000, 'audi': 51000, 'mercedesbenz': 80000}
---------------------
audi: 51000
chevrolet: 42000
hyundai: 45000
mercedesbenz: 80000
tesla: 65000



  : 방법 2) sorted(object.items()) 메소드 사용 



import yaml


with open('cars.yml') as f:

    

    cars_original = yaml.load(f, Loader=yaml.FullLoader)

    print(cars_original)

    

    print("---------------------")

    # sort by key in ascending order

    for key, value in sorted(cars_original.items()):

        print(key, ':', value


{'hyundai': 45000, 'tesla': 65000, 'chevrolet': 42000, 'audi': 51000, 'mercedesbenz': 80000}
---------------------
audi : 51000
chevrolet : 42000
hyundai : 45000
mercedesbenz : 80000
tesla : 65000

 



(3-2) Key 값의 역순으로 정렬 (sorting in reverse order): sorted(object.items(), reverse=True)



import yaml


with open('cars.yml') as f:

    cars_original = yaml.load(f, Loader=yaml.FullLoader)

    print(cars_original)

    

    print("---------------------")

    

    # sorting by key in reverse order

    for key, value in sorted(cars_original.items(), reverse=True):

        print(key, ':', value)


tesla : 65000
mercedesbenz : 80000
hyundai : 45000
chevrolet : 42000
audi : 51000




(3-3) 읽어온 YAML 파일을 Value 기준으로 정렬하기 (sorting by Value)



import yaml


with open('cars.yml') as f:

    cars_original = yaml.load(f, Loader=yaml.FullLoader)

    print(cars_original)

    

    print("---------------------")

    # sorting by value in ascending order

    for key, value in sorted(cars_original.items(), key = lambda item: item[1]):

        print(key, ':', value)


{'hyundai': 45000, 'tesla': 65000, 'chevrolet': 42000, 'audi': 51000, 'mercedesbenz': 80000}
---------------------
chevrolet : 42000
hyundai : 45000
audi : 51000
tesla : 65000
mercedesbenz : 80000




  (4) Python 객체를 YAML stream으로 직렬화 하기: yaml.dump()


Key, Value 쌍으로 이루어진 Python Dictionary를 yaml.dump() 메소드를 사용해서 YAML stream으로 직렬화해보겠습니다. 



import yaml


fruits = {'fruits': ['blueberry', 'apple', 'orange']}


# serialize a Python object into YAML stream

fruits_serialized_yaml = yaml.dump(fruits)

print(fruits_serialized_yaml)

 

fruits:
- blueberry
- apple
- orange




  (5) Python 객체를 YAML 파일로 쓰기: with open('w') as f: yaml.dump()


위의 (4)번에서 소개한, YAML stream으로 직렬화하는 yaml.dump() 메소드에 with open('w') 함수를 같이 사용해서 이번에는 YAML file 에 쓰기('w')를 해보겠습니다. 



import yaml


fruits = {'fruits': ['blueberry', 'apple', 'orange']}


with open('fruits.yaml', 'w') as f:

    yaml.dump(fruits, f)




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. 



728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 (1) 날짜 TimeStamp (m개) 와 (2) 고객 ID (n개) 의 두 개 칼럼을 가진 DataFrame에서 고객ID 별로 중간 중간 날짜 TimeStamp 가 비어있는 경우 모두 '0'으로 채워서 모든 조합 (m * n 개) 을 MultiIndex로 가진 시계열 데이터 형태의 DataFrame을 만들어보겠습니다. 


이번 포스팅에서는 pandas DataFrame에서 index 설정 관련해서 MultiIndex(), set_index(), reindex(), reset_index() 등 index 설정과 재설정 관련된 여러가지 메소드가 나옵니다. 


말로만 설명을 들으면 좀 어려운데요, 아래의 전(Before) --> 후(After) DataFrame의 전처리 Output Image를 보면 이해하기가 쉽겠네요. (시계열 데이터 분석을 할 때 아래의 우측에 있는 것처럼 데이터 전처리를 미리 해놓아야 합니다.) 




먼저, 년-월-일 TimeStamp (ts), 고객 ID (id), 구매 금액 (amt)의 세개 칼럼으로 구성된 거래 데이터(tr)인, 예제로 사용할 간단한 pandas DataFrame을 만들어보겠습니다. 



import pandas as pd


tr = pd.DataFrame({

    'ts': ['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-01', '2020-06-03'], 

    'id': [1, 1, 1, 2, 3], 

    'amt': [100, 300, 50, 200, 150]})


tr

tsidamt
02020-06-011100
12020-06-021300
22020-06-03150
32020-06-012200
42020-06-033150

 



다음으로, 거래 데이터(tr) DataFrame의 날짜(ts)와 고객ID(id)의 모든 조합(all combination)으로 구성된  Multi-Index 를 만들어보겠습니다. pd.MultiIndex.from_product((A, B)) 메소드를 사용하면 Cartesian Product 을 수행하여, 총 A의 구성원소 개수 * B의 구성원소 개수 종류 만큼의 MultiIndex 를 생성해줍니다. 위 예제의 경우 날짜(ts)에 '2020-06-01', '2020-06-02', '2020-06-03'의 3개 날짜가 있고, 고객ID(id) 에는 1, 2, 3 의 3개가 있으므로 Cartesian Product 을 하면 아래의 결과처럼 3 * 3 = 9 의 조합이 생성이 됩니다. 



date_id_idx = pd.MultiIndex.from_product((set(tr.ts), set(tr.id)))

date_id_idx

MultiIndex([('2020-06-01', 1),
            ('2020-06-01', 2),
            ('2020-06-01', 3),
            ('2020-06-02', 1),
            ('2020-06-02', 2),
            ('2020-06-02', 3),
            ('2020-06-03', 1),
            ('2020-06-03', 2),
            ('2020-06-03', 3)],
           )



이제 위에서 Cartesian Product으로 만든 TimeStamp(ts)와 고객ID(id)의 모든 조합으로 구성된 MultiIndex인 date_id_idx 를 사용하여 index를 재설정(reindex) 해보겠습니다. 이때 원래(Before)의 DataFrame에는 없었다가 date_id_idx 로 index를 재설정(reindex) 하면서 새로 생긴 행에 구매금액(amt) 칼럼에는 'NaN' 의 결측값이 들어가게 됩니다. 이로서 처음에 5개 행이었던 것이 이제 9개(3*3=9) 행으로 늘어났습니다. 



tr_tsformat = tr.set_index(['ts', 'id']).reindex(date_id_idx)

tr_tsformat

amt
2020-06-011100.0
2200.0
3NaN
2020-06-021300.0
2NaN
3NaN
2020-06-03150.0
2NaN
3150.0

 



날짜(ts)와 고객ID(id)의 MultiIndex로 reindex() 하면서 생긴 NaN 값을 '0'으로 채워넣기(fill_value=0)해서 새로 DataFrame을 만들어보겠습니다. 



tr_tsformat = tr.set_index(['ts', 'id']).reindex(date_id_idx, fill_value=0)

tr_tsformat

amt
2020-06-011100
2200
30
2020-06-021300
20
30
2020-06-03150
20
3150

 



만약 날짜(ts)와 고객ID(id)의 MultiIndex로 이루어진 위의 DataFrame에서 MultiIndex를 칼럼으로 변경하고 싶다면 reset_index() 함수를 사용하면 됩니다. 칼럼 이름은 애초의 DataFrame과 동일하게 ['ts', 'id', 'amt'] 로 다시 부여해주었습니다. 



tr_tsformat.reset_index(inplace=True)

tr_tsformat

level_0level_1amt
02020-06-011100
12020-06-012200
22020-06-0130
32020-06-021300
42020-06-0220
52020-06-0230
62020-06-03150
72020-06-0320
82020-06-033

150

 


tr_tsformat.columns = ['ts', 'id', 'amt']

tr_tsformat

tsidamt
02020-06-011100
12020-06-012200
22020-06-0130
32020-06-021300
42020-06-0220
52020-06-0230
62020-06-03150
72020-06-0320
82020-06-033150




참고로, pandas에서 ID는 없이 TimeStamp만 있는 일정한 주기의 시계열 데이터 Series, DataFrame 만들기는 https://rfriend.tistory.com/501 를 참고하세요. 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,

예전 포스팅(https://rfriend.tistory.com/250)에서 pandas read_csv() 함수로 text, csv 파일을 읽어오는 방법을 소개하였습니다. 


이번 포스팅에서는 Python pandas의 read_csv() 함수를 사용하여 csv file, text file 을 읽어와 DataFrame을 만들 때 날짜/시간 (Date/Time) 이 포함되어 있을 경우 이를 날짜/시간 형태(DateTime format)에 맞도록 파싱하여 읽어오는 방법을 소개하겠습니다. 


[예제 샘플 데이터] 

date_sample






  (1) 날짜/시간 포맷 지정 없이 pd.read_csv() 로 날짜/시간 데이터 읽어올 경우


예제로 사용할 데이터는 위의 이미지 우측 상단에 있는 바와 같이 '1/5/2020 10:00:00' (1일/ 5월/ 2020년 10시:00분:00초) 형태의 날짜/시간 칼럼을 포함하고 있는 텍스트 파일입니다. 


이 예제 데이터를 날짜/시간 포맷에 대한 명시적인 설정없이 그냥 pandas의 read_csv() 함수로 읽어와서 DataFrame을 만들 경우 아래와 같이 object 데이터 형태로 불어오게 됩니다. 이럴 경우 별도로 문자열을 DateTime foramt으로 변환을 해주어야 하는 불편함이 있습니다. (참고: https://rfriend.tistory.com/498)



import pandas as pd


df = pd.read_csv('date_sample', sep=",", names=['date', 'id', 'val']) # no datetime parsing


df

dateidval
01/5/2020 10:00:00110
11/5/2020 10:10:00112
21/5/2020 10:20:00117
31/5/2020 10:00:00211
41/5/2020 10:10:00214
51/5/2020 10:20:00216


df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6 entries, 0 to 5 Data columns (total 3 columns): date 6 non-null object <-- not datetime format id 6 non-null int64 val 6 non-null int64 dtypes: int64(2), object(1) memory usage: 272.0+ bytes




-- 날짜/시간 파싱 자동 추정 --

  (2) parse_dates=['date'] 칼럼에 대해 

      dayfirst=True 일이 월보다 먼저 위치하는 것으로 

      infer_datetime_format=True 날짜시간 포맷 추정해서 파싱하기


이번 예제 데이터의 경우 '1/5/2020 10:00:00' (1일/ 5월/ 2020년 10시:00분:00초) 처럼 '일(day)'이 '월(month)' 보다 먼저 나오으므로 dayfirst=True 로 설정해주었습니다. infer_datetime_format=True 로 설정해주면 Python pandas가 똑똑하게도 알아서 날짜/시간 포맷을 추정해서 잘 파싱해줍니다. 




df_date.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 3 columns):
date    6 non-null datetime64[ns] <-- datetime foramt!!
id      6 non-null int64
val     6 non-null int64
dtypes: datetime64[ns](1), int64(2)
memory usage: 272.0 bytes



import pandas as pd


df_date = pd.read_csv("date_sample", 

                      sep=",", 

                      names=['date', 'id', 'val'], 

                      parse_dates=['date']

                      dayfirst=True, # May 1st

                      infer_datetime_format=True)



df_date  # May 1st, 2020

dateidval
02020-05-01 10:00:00110
12020-05-01 10:10:00112
22020-05-01 10:20:00117
32020-05-01 10:00:00211
42020-05-01 10:10:00214
52020-05-01 10:20:00216




  (3) dayfirst=False 일(day)이 월(month)보다 뒤에 있는 파일 날짜/시간 파싱하기


만약에 '1/5/2020 10:00:00' (1월/ 5일/ 2020년 10시:00분:00초) 의 형태로 월(month)이 일(day)보다 먼저 나오는 파일을 읽어와서 파싱하는 경우에는 dayfirst=False 로 설정해주면 됩니다. (default 값은 False 이므로 생략 가능합니다)



df_date_dayfirstF = pd.read_csv("date_sample", 

                                sep=",", 

                                names=['date', 'id', 'val'], 

                                parse_dates=['date']

                                dayfirst=False, # January 5th, default setting

                                infer_datetime_format=True)



df_date_dayfirstF  # January 5th, 2020

dateidval
02020-01-05 10:00:00110
12020-01-05 10:10:00112
22020-01-05 10:20:00117
32020-01-05 10:00:00211
42020-01-05 10:10:00214
52020-01-05 10:20:00216

 




-- 날짜/시간 파싱 함수 수동 지정 --

  (4) date_parser=Parser 함수를 사용해서 데이터 읽어올 때 날짜/시간 파싱하기


위의 (2)번, (3)번에서는 infer_datetime_format=True 로 설정해줘서 pandas가 알아서 날짜/시간 포맷을 추정(infer)해서 파싱을 해주었다면요, 


이번에는 날짜/시간 파싱하는 포맷을 lambda 함수로 직접 명시적으로 사용자가 지정을 해주어서 read_csv() 함수로 파일을 읽어올 때 이 함수를 사용하여 날짜/시간 포맷을 파싱하는 방법입니다. 

이번 예제의 날짜/시간 포맷에 맞추어서 datetime.strptime(x, "%d/%m/%Y %H:%M:%S") 로 string을 datetime으로 변환해주도록 하였습니다. 



# parsing datetime string using lambda Function at date_parser

# Reference: converting string to DataTime: https://rfriend.tistory.com/498

import pandas as pd

from datetime import datetime


dt_parser = lambda x: datetime.strptime(x, "%d/%m/%Y %H:%M:%S")


df_date2 = pd.read_csv("date_sample", 

                       sep=",", 

                       names=['date', 'id', 'val'], 

                       parse_dates=['date'], # column name

                       date_parser=dt_parser)


df_date2

dateidval
02020-05-01 10:00:00110
12020-05-01 10:10:00112
22020-05-01 10:20:00117
32020-05-01 10:00:00211
42020-05-01 10:10:00214
52020-05-01 10:20:00216




참고로, pd.read_csv() 함수에서 날짜/시간 데이터는 위에서 처럼 parse_dates=['date'] 처럼 명시적으로 칼럼 이름을 설정해줘도 되구요, 아래처럼 parse_dates=[0] 처럼 위치 index 를 써주어도 됩니다. 



# parse_dates=[column_position]

import pandas as pd

from datetime import datetime


dt_parser = lambda x: datetime.strptime(x, "%d/%m/%Y %H:%M:%S")

df_date3 = pd.read_csv("date_sample", 

                       sep=",", 

                       names=['date', 'id', 'val'], 

                       parse_dates=[0], # position index

                       date_parser=dt_parser)


df_date3

dateidval
02020-05-01 10:00:00110
12020-05-01 10:10:00112
22020-05-01 10:20:00117
32020-05-01 10:00:00211
42020-05-01 10:10:00214
52020-05-01 10:20:00216





  (5) index_col 로 날짜-시간 데이터를 DataFrame index로 불러오기


마지막으로, 파일을 읽어올 때 index_col=['column_name'] 또는 index_col=column_position 을 설정해주면 날짜/시간을 pandas DataFrame의 index로 바로 읽어올 수 있습니다. 

(그냥 칼럼으로 읽어온 후에 date 칼럼을 reindex() 를 사용해서 index로 설정해도 됩니다. 

 * 참고: https://rfriend.tistory.com/255)



# use datetime as an index

import pandas as pd


df_date_idx = pd.read_csv("date_sample", 

                          sep=",", 

                          names=['date', 'id', 'val'], 

                          index_col=['date'], # or index_col=0 

                          parse_dates=True, 

                          dayfirst=True,

                          infer_datetime_format=True)



df_date_idx

idval
date
2020-05-01 10:00:00110
2020-05-01 10:10:00112
2020-05-01 10:20:00117
2020-05-01 10:00:00211
2020-05-01 10:10:00214
2020-05-01 10:20:00216




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,

Python은 고수준의 객체지향 프로그래밍 언어입니다. 파이썬 툴을 사용해 재사용 가능한 코드를 작성하는 기능은 파이썬이 가지고 있는 큰 장점 중의 하나입니다. 


Python Functools 는 고차함수(high order functions)를 위해 설계된 라이브러리로서, 호출 가능한 기존의 객체, 함수를 사용하여 다른 함수를 반환하거나 활용할 수 있게 해줍니다. Functools 라이브러리는 기존 함수를 이용하는 함수를 모아놓은 모듈이라고 하겠습니다. Functools 라이브러리에는 partial(), total_ordering(), reduce(), chched_perperty() 등 여러 함수가 있는데요, 이번 포스팅에서는 partial() 메소드에 대해서 소개하겠습니다. 

(* functools.reduce() 함수 참고 : https://rfriend.tistory.com/366)





Functools partial 함수는 기존 파이썬 함수를 재사용하여 일부 위치 매개변수 또는 키워드 매개변수를 고정한(freezed, fixec) 상태에서, 원래의 함수처럼 작동하는 새로운 부분 객체(partial object)를 반환합니다. functools.partial() 함수의 syntax는 아래와 같이, 기존 함수이름을 써주고, 고정할 매개변수 값을 써주면 됩니다.  


from functools import partial


functools.partial(func, /, *args, **keywords)


간단한 예제로서, 숫자나 문자열을 정수(integer)로 변환해주는 파이썬 내장 함수 int(x, base=10)를 재활용하여, base=2 로 고정한 새로운 함수를 functools.partial() 함수로 만들어보겠습니다. 



# python build-in function int(x, base=10)

int('101', base=2)

[Out]: 5

int('101', base=5)

[Out]: 26

 



# create a basetwo() function using functools.partial() and int() function

from functools import partial


basetwo = partial(int, base=2)  # freeze base=2

basetwo('101')

[Out]: 5




int() 함수를 재활용해서 base=2 로 고정해서 새로 만든 basetwo() 라는 이름의 함수에 basetwo.__doc__ 로 설명을 추가하고, 호출해서 확인해보겠습니다. 



# add __doc__ attribute

basetwo.__doc__ = 'Convert base 2 string to an int.'


basetwo.__doc__

[Out]: 'Convert base 2 string to an int.'




functools.partial() 로 만든 새로운 객체는 func, args, keywords 속성(attributes)을 가지고 있습니다. 

이번 예에서는 재활용한 기존 함수(func)가 int(), 키워드 매개변수(keywords)가 base=2 ({'base': 2} 였는데요, 아래처럼 확인할 수 있습니다. 



basetwo.func

[Out]: int


basetwo.args

[Out]: ()


basetwo.keywords

[Out]: {'base': 2}

 



* functools library refreence: https://docs.python.org/3/library/functools.html#module-functools


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

파이썬 객체를 일정한 규칙(규약)을 따라서 (a) 효율적으로 저장하거나 스트림으로 전송할 때 파이썬 객체의 데이터를 줄로 세워 저장하는 것을 직렬화(serialization) 라고 하고, (b) 이렇게 직렬화된 파일이나 바이트를 원래의 객체로 복원하는 것을 역직렬화(de-serialization)라고 합니다. 


직렬화, 역직렬화를 하는데 Pickle, JSON, YAML 등 여러가지 방법이 있습니다. Pickle 방식은 사람이 읽을 수 없는 반면 저장이나 전송이 효율적입니다. 대신 JSON, YAML 방식은 저장이나 전송이 Pickle 보다는 덜 효율적이지만 사람이 읽을 수 있는 가독성이 좋은 장점이 있습니다. (* 파이썬에서 JSON 데이터 읽고 쓰기: https://rfriend.tistory.com/474)


이번 포스팅에서는 Pickle 방식으로 이진 파일이나 바이트 객체로 직렬화하고, 이를 다시 역직렬화해서 불러오는 방법에 대해서 소개하겠습니다. Pickle 방식에서는 직렬화(serialization)는 Pickling 이라고도 하며, 역직렬화(deserialization)는 Unpickling 이라고도 합니다. 


파이썬에서 Pickle 방식으로 직렬화, 역직렬화하는데는 파이썬으로 작성되고 파이썬 표준 라이브러리에 포함되어 있는 pickle module, C로 작성되어 매우 빠르지만 Subclass 는 지원하지 않는 cPickle module 의 두 가지 패키지를 사용할 수 있습니다. (* source : https://pymotw.com/2/pickle/)


파이썬의 Pickle 방식으로 직렬화할 수 있는 객체는 모든 파이썬 객체를 망라합니다. (정수, 실수, 복소소, 문자열, 블리언, 바이트 객체, 바이트 배열, None, 리스트, 튜플, 사전, 집합, 함수, 클래스, 인스턴스 등)


이번 포스팅에서는 Python 3.7 버전(protocol = 3)에서 pickle 모듈을 사용하여 


(1-1) 파이썬 객체를 직렬화하여 이진 파일(binary file)에 저장하기 : pickle.dump()

(1-2) 직렬화되어 있는 이진 파일로 부터 파이썬 객체로 역직렬화하기: pickle.load()


(2-1) 파이썬 객체를 직렬화하여 메모리에 저장하기: pickle.dumps()

(2-2) 직렬화되어 있는 바이트 객체(bytes object)를 파이썬 객체로 역직렬화: pickle.loads()


로 나누어서 각 방법을 소개하겠습니다. 


pickle.dump()와 pickle.dumps() 메소드, 그리고 pickle.load()와 pickle.loads() 메소드의 끝에 's'가 안붙고 붙고의 차이를 유심히 봐주세요. 


 구분

 Binary File on disk

Bytes object on memory 

 직렬화

(serialization)

 with open("file.txt", "wb") as MyFile:

     pickle.dump(MyObject, MyFile)

 pickle.dumps(MyObject, MyBytes)

 역직렬화

(deserialization)

 with open("file.txt", "rb") as MyFile:

     MyObj2 = pickle.load(MyFile)

 MyObj2 = pickle.loads(MyBytes)




직렬화, 역직렬화를 할 때 일정한 규칙을 따라야 하는데요, 파이썬 버전별로 Pickle Protocol Version 은 아래에 정리한 표를 참고하시기 바랍니다. 그리고 상위 버전의 Pickle Protocol Version에서 저장한 경우 하위 버전에서 역직렬화할 수 없으므로 주의가 필요합니다. (가령 Python 3.x에서 Protocol = 3 으로 직렬화해서 저장한 파일을 Python 2.x 에서 Protocol = 2 버전으로는 역직렬화 할 수 없습니다.)




먼저, 예제로 사용할 정수, 텍스트, 실수, 블리언 고유 자료형을 포함하는 파이썬 사전 객체 (python dictionary object)를 만들어보겠습니다. 



MyObject = {'id': [1, 2, 3, 4], 

           'name': ['KIM', 'CHOI', 'LEE', 'PARK'], 

           'score': [90.5, 85.7, 98.9, 62.4], 

           'pass_yn': [True, True, True, False]}





 (1-1) 파이썬 객체를 직렬화하여 이진 파일(binary file)에 저장하기 : pickle.dump()



import pickle


with open("serialized_file.txt", "wb") as MyFile:

    pickle.dump(MyObject, MyFile, protocol=3)



with open("serialized_file.txt", "wb") as MyFile 함수를 사용해서 "serialized_file.txt" 라는 이름의 파일을 이진 파일 쓰기 모드 ("wb") 로 열어 놓습니다. (참고로, with open() 은 close() 를 해줄 필요가 없습니다.)


pickle.dump(MyObject, MyFile) 로 위에서 만든 MyObject 사전 객체를 MyFile ("serialized_file.txt") 에 직렬화해서 저장합니다. 


Python 3.7 버전에서 작업하고 있으므로 protocol=3 으로 지정해줬는데요, Python 3.0~3.7 버전에서는 기본값이 protocol=3 이므로 안써줘도 괜찮습니다. 


현재의 작업 폴더에 가보면 "serialized_file.txt" 파일이 생성이 되어있을 텐데요, 이 파일을 클릭해서 열어보면 아래와 같이 사람이 읽을 수 없는 binary 형태로 저장이 되어 있습니다. (만약 사람이 읽을 수 있고 가독성이 좋은 저장, 전송을 원한다면 JSON, YAML 등을 사용해서 직렬화 하면됨)





 (1-2) 직렬화되어 있는 이진 파일로 부터 파이썬 객체로 역직렬화: pickle.load()



import pickle


with open("serialized_file.txt", "rb") as MyFile:

    UnpickledObject = pickle.load(MyFile)



UnpickledObject

[Out]:
{'id': [1, 2, 3, 4],
 'name': ['KIM', 'CHOI', 'LEE', 'PARK'],
 'score': [90.5, 85.7, 98.9, 62.4],
 'pass_yn': [True, True, True, False]}


with open("serialized_file.txt", "rb") as MyFile 를 사용하여 위의 (1-1)에서 파이썬 사전 객체를 직렬화하여 이진 파일로 저장했던 "serialized_file.txt" 파일을 이진 파일 읽기 모드 ("rb") 로 MyFile 이름으로 열어 놓습니다. 


UnpickledObject = pickle.load(MyFile) 로 앞에서 열어놓은 MyFile 직렬화된 파일을 역직렬화(de-serialization, unpickling, decoding) 하여 UnpickledObject 라는 이름의 파이썬 객체를 생성합니다. 


이렇게 만든 UnpickledObject 파이썬 객체를 호출해보니 다시 사람이 읽을 수 있는 사전 객체로 다시 잘 복원되었음을 알 수 있습니다. 




 (2-1) 파이썬 객체를 직렬화하여 메모리에 Bytes object로 저장하기pickle.dumps()



import pickle 


MyBytes = pickle.dumps(MyObject, protocol=3)



# unreadable bytes object

MyBytes

[Out]:

b'\x80\x03}q\x00(X\x02\x00\x00\x00idq\x01]q\x02(K\x01K\x02K\x03K\x04eX\x04\x00\x00\x00nameq\x03]q\x04(X\x03\x00\x00\x00KIMq\x05X\x04\x00\x00\x00CHOIq\x06X\x03\x00\x00\x00LEEq\x07X\x04\x00\x00\x00PARKq\x08eX\x05\x00\x00\x00scoreq\t]q\n(G@V\xa0\x00\x00\x00\x00\x00G@Ul\xcc\xcc\xcc\xcc\xcdG@X\xb9\x99\x99\x99\x99\x9aG@O333333eX\x07\x00\x00\x00pass_ynq\x0b]q\x0c(\x88\x88\x88\x89eu.'



위의 (1-1)이 파이썬 객체를 이진 파일(binary file) 로 로컬 디스크에 저장하였다면, 이번 (2-1)은 pickle.dumps(object_name, protocol=3) 을 사용해서 메모리에 Bytes object로 직렬화해서 저장하는 방법입니다. pickle.dumps() 메소드의 제일 뒤에 's'가 추가로 붙어있는 것 유의하세요. 


이렇게 직렬화해서 저장한 Bytes object의 경우 사람이 읽을 수 없는 형태입니다. (반면, 컴퓨터한테는 데이터를 저장하기에 더 효율적인 형태)




 (2-2) 직렬화되어 있는 바이트 객체를 파이썬 객체로 역직렬화: pickle.loads()



import pickle


MyObj2 = pickle.loads(MyBytes)


MyObj2

[Out]:
{'id': [1, 2, 3, 4],
 'name': ['KIM', 'CHOI', 'LEE', 'PARK'],
 'score': [90.5, 85.7, 98.9, 62.4],
 'pass_yn': [True, True, True, False]}

 


위의 (2-1)에서 직렬화하여 저장한 바이트 객체 MyBytes 를 pickle.loads() 메소드를 사용하여 역직렬화하여 MyObj2 라는 이름의 파이썬 객체를 생성한 예입니다.  


* reference: https://docs.python.org/3.7/library/pickle.html

* pickle and cPicklehttps://pymotw.com/2/pickle/


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

지난번 포스팅에서는 파일을 열고(open), 파일을 읽고(read), 쓰고(write), 닫기(close)를 하는 방법을 소개하였습니다.  

 

이번 포스팅에서는 Python 에서 

 

(1) 문자열로 이루어진 리스트를 텍스트 파일에 쓰기

    - (1-1) 한 줄씩 쓰기 : write() 메소드 (for loop 문과 함께 사용)

    - (1-2) 한꺼번에 모든 줄 쓰기 : writelines() 메소드

 

(2) 텍스트 파일을 읽어오기

    - (2-1) 텍스트를 한 줄씩 읽어오기 : readline() 메소드 (while 문과 함께 사용)

    - (2-2) 텍스트를 한꺼번에 모두 읽어오기 : readlines() 메소드

 

에 대해서 소개하겠습니다. 

 

 

 (1-1) 문자열로 이루어진 리스트를 한 줄씩 텍스트 파일에 쓰기 : write() 메소드

 

 

 

예제로 사용할 텍스트는 영화 매트릭스(movie Matrix)에서 모피어스가 네오에게 말했던 대사 (Morpheus Quotes to Neo) 중 몇 개로 이루어진 파이썬 리스트입니다. '\n'으로 줄을 구분하였습니다. 

 

 

matrix_quotes = ["The Matrix is the world that has been pulled over your eyes to blind you from the truth.\n", 

                 "You have to let it all go, Neo. Fear, doubt, and disblief. Free your mind.\n", 

                 "There is a difference between knowing the path and walking the path.\n", 

                 "Welcom to the desert of the real!\n"]

 

 

* image source: https://www.elitecolumn.com/morpheus-the-matrix-quotes/morpheus-the-matrix-quotes-4/

 

위의 텍스트 문자열로 이루어진 'matrix_quotes' 리스트를 'matrix_quotes.txt'라는 이름의 파일에 한 줄씩 써보도록 하겠습니다. 먼저 with open('matrix_quotes.txt', 'w') 함수를 사용해서 'matrix_quotes.txt'라는 이름의 파일을 '쓰기 모드('w')'로 열고, 모두 4줄로 이루어진 리스트이므로 for loop 순환문을 이용해서 한줄 씩 line 객체로 가져온 다음에 f.write(line) 메소드로 한 줄씩(line by line) 'matrix_quotes.txt' 텍스트 파일에 써보겠습니다. 

 

 

with open('matrix_quotes.txt', 'w') as f:

    for line in matrix_quotes:

        f.write(line)

 

 

* 참고로, with open() 함수를 사용하면 close() 를 해주지 않아도 알아서 자동으로 close()를 해줍니다. 

* with open('matrix_quotes.txt', 'w') 에서 'w' 는 쓰기 모드를 의미합니다. 

 

 

현재 Jupyter notebook을 열어서 작업하고 있는 폴더에 'matrix_quotes.txt' 텍스트 파일이 생성되었음을 확인할 수 있습니다. 

 

 

 

 

for loop 문과 write() 메소드를 사용해서 텍스트를 파일에 쓴 'matrix_quotes.txt' 파일을 더블 클릭해서 열어보니 Python list 의 내용과 동일하고, 줄 구분도 '\n'에 맞게 잘 써진 것을 알 수 있습니다. 

 

 

 

 

 

 (1-2) 문자열로 이루어진 리스트의 모든 줄을 텍스트 파일에 쓰기: writelines() 메소드 

 

그런데 위의 write() 메소드의 경우 여러 개의 줄이 있을 경우 for loop 반복 순환문을 함께 써줘야 하는 불편함이 있습니다. 이때 writelines() 메소드를 사용하면 리스트 안의 모든 줄을 한꺼번에 텍스트 파일에 써줄 수 있어서 편리합니다.  위의 (1-1)과 동일한 작업을 writelines() 메소드를 사용해서 하면 아래와 같습니다. 

 

 

matrix_quotes = ["The Matrix is the world that has been pulled over your eyes to blind you from the truth.\n", 

                 "You have to let it all go, Neo. Fear, doubt, and disblief. Free your mind.\n", 

                 "There is a difference between knowing the path and walking the path.\n", 

                 "Welcom to the desert of the real!\n"]

 

 

with open('maxtix_quotes_2.txt', 'w') as f:

    f.writelines(matrix_quotes)

 

 

 

Jupyter notebook을 작업하고 있는 폴더에 가서 보니 'matrix_quotes_2.txt' 파일이 새로 잘 생성되었습니다. 

 

 

 

 

 

  (2-1) 텍스트 파일을 한 줄씩 읽어오기 : readline() 메소드

 

이제는 방금전 (1-1)에서 만든 'matrix_quotes.txt' 텍스트 파일로 부터 텍스트를 한 줄씩 읽어와서 matrix_quotes_list 라는 이름의 파이썬 리스트를 만들어보겠습니다. 

 

 

 

readline() 메소드는 텍스트 파일을 '\n', '\r', '\r\n' 과 같은 개행 문자(newline) 를 기준으로 한 줄씩 읽어오는 반면에 vs. readlines() 메소드는 텍스트 파일 안의 모든 텍스트를 한꺼번에 읽어오는 차이가 있습니다.  따라서 한 줄씩만 읽어오는 readline() 메소드를 사용해서 텍스트 파일 내 모든 줄을 읽어오려면 while 순환문을 같이 사용해주면 됩니다. 

 

 

with open('matrix_quotes.txt', 'r') as text_file:    matrix_quotes_list = []    line = text_file.readline()        while line != '':        matrix_quotes_list.append(line)        line = text_file.readline()

 

 

 

matrix_quotes_list

[Out]: 
['The Matrix is the world that has been pulled over your eyes to blind you from the truth.\n',  'You have to let it all go, Neo. Fear, doubt, and disblief. Free your mind.\n',  'There is a difference between knowing the path and walking the path.\n',  'Welcom to the desert of the real!\n',  '']

 

 

* 참고로 with open('matrix_quotes.txt', 'r') 에서 'r'은 '읽기 모드'를 의미합니다. 

 

 

만약 파일을 한 줄씩 읽어오면서 매 10번째 행마다 새로운 파일에 쓰기를 하고 싶다면 아래 코드 참고하세요. 

with open(in_name, 'r') as in_file:
    with open(out_name, 'w') as out_file:
        count = 0
        for line in in_file:
            if count % 10 == 0:
                out_file.write(line)
            count += 1

 

 

 

  (2-2) 텍스트 파일을 모두 한꺼번에 읽어오기 : readlines() 메소드

 

이번에는 readlines() 메소드를 사용해서 'matrix_quotes.txt' 텍스트 파일 안의 모든 줄을 한꺼번에 읽어와서 matrix_quotes_list_2 라는 이름의 파이썬 리스트를 만들어보겠습니다.  readlines() 메소드는 한꺼번에 텍스트를 읽어오기 때문의 위의 (2-1) 의 readline()메소드와 while 순환문을 함께 쓴 것도다 코드가 간결합니다. 

 

 

with open('matrix_quotes.txt', 'r') as text_file:

    matrix_quotes_list_2 = text_file.readlines()

 

 

matrix_quotes_list_2

[Out]: 
['The Matrix is the world that has been pulled over your eyes to blind you from the truth.\n',  'You have to let it all go, Neo. Fear, doubt, and disblief. Free your mind.\n',  'There is a difference between knowing the path and walking the path.\n',  'Welcom to the desert of the real!\n']

 

 

 

많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~

'를 꾹 눌러주세요. :-)

 

 

 

728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 파이썬으로 


(1) 파일을 열고, 데이터를 쓰고, 파일을 닫기

(2) 파일을 열고, 데이터를 읽고, 파일을 닫기

(3) with open(file_name) as file_object: 로 파일 열고, 데이터를 읽고, 자동으로 파일 닫기

(4) open() error 처리 옵션 설정


하는 방법을 소개하겠습니다. 




파이썬으로 파일을 열 때 open() 함수를 사용하는데요, 1개의 필수 매개변수와 7개의 선택적 매개변수를 가지며, 파일 객체를 반환합니다. open() 함수의 mode 는 'w', 'r', 'x', 'a', '+', 'b', 't'의 7개 모드가 있으며, 위의 이미지 우측에 있는 표를 참고하시기 바랍니다. ('r' 읽기용으로 파일 열기't' 텍스트 모드로 열기가 기본 설정값입니다)



open(

  file,                 # 필수 매개변수, 파일의 경로

  mode = 'r',       # 선택적 매개변수, 'rt' (읽기용, text mode)가 기본값

  buffering = -1,   # 선택적 매개변수, 버퍼링 정책 (0 : binary mode 시 버퍼링 미수행, 

                        # 1: 텍스트 모드 시 개행문자(\n)을 만날 때까지 버퍼링)

  encoding = None, # 선택적 매개변수, 문자 인코딩 방식 (예: 'utf-8', 'cp949', 'latin' 등)

  errors = None,   # 선택적 매개변수, 텍스트 모드 시 에러 처리 (예: 'ignore' 에러 무시)

  newline = None, # 선택적 매개변수, 줄바꿈 처리 (None, '\n', '\r', '\r\n')

  closefd = True,   # 선택적 매개변수, False 입력 시 파일 닫더라도 파일 기술자 계속 열어둠

  opener = None) # 선택적 매개변수, 파일을 여는 함수를 직저 구현 시 사용

 




  (1) 파일을 열고 --> 파일에 데이터를 쓰고 --> 파일을 닫기


(1-1) MyFile = open('myfile.txt', 'w') : open() 함수를 사용하여 'myfile.txt' 파일을 'w' 모드 (쓰기용으로 파일 열기, 파일이 존재하지 않으면 새로 생성, 파일이 존재하면 파일 내용을 비움(truncate)) 열어서 MyFile 객체에 할당하고,  

(1-2) MyFile.write('data') : MyFile 객체에 'data'를 쓴 후에, 

(1-3) MyFile.close() : 파일을 닫습니다. 자원 누수 방지를 위해 마지막에는 꼭 파일을 닫아(close) 주어야 합니다. 


참고로, Windows 10 OS의 기본 encoding 은 'cp949' 입니다. 



# Open and Write

MyFile = open('myfile.txt', 'w')

MyFile.write('Open, read, write and close a file using Python')

MyFile.close()


# encoding = 'cp949' for Windows10 OS

MyFile

[Out] <_io.TextIOWrapper name='myfile.txt' mode='w' encoding='cp949'>

 



현재 작업 경로에 위에서 만든 'myfile.txt' 파일이 생성이 되어서 존재하는지 확인해보겠습니다. 



import os

os.listdir(os.getcwd())

[Out]:

['myfile.txt', 'Python_read_write_file.ipynb']

 




  (2) 파일을 열고 --> 파일의 데이터를 읽고 --> 파일을 닫기


(2-1) MyFile = open('myfile.txt', 'r') : 이번에는 (1)번에서 데이터를 써서 만들어놓은 'myfile.txt' 파일을 open() 함수의 'r' 모드 (읽기용으로 파일 열기, default) 로 열어서 MyFile 객체에 할당하고, 

(2-2) MyString = MyFile.read() : 'myfile.txt' 파일을 읽어서 MyString 객체에 데이터를 저장하고, print(MyString) 로 인쇄를 한 후, 

(2-3) MyFile.close() : 파일을 닫습니다. 자원 누수 방지를 위해 마지막에는 꼭 파일을 닫아(close) 주어야 합니다. 


# Open and Read

MyFile = open('myfile.txt', 'r')


# equivalent to the above

#MyFile = open('myfile.txt', 'rt')

#MyFile = open('myfile.txt', 't')

#MyFile = open('myfile.txt')


MyString = MyFile.read()

print(MyString)


[Out]: Open, read, write and close a file using Python


# close the 'MyFile' file

MyFile.close()



open() 함수의 7개 mode 중에서 'r' 읽기용으로 열기와 't' 텍스트 모드로 열기가 기본값이므로 위의 open('myfile.txt', 'r') 은 open('myfile.txt', 'rt'), open('myfile.txt', 't'), open('myfile.txt') 와 동일한 코드입니다. 




  (3) with open(파일 이름) as 파일 객체: 를 사용해서 파일 열기


with open() as 문을 사용하여 파일을 열면 마지막에 close() 함수를 명시적으로 써주지 않아도 자동으로 파일이 닫힙니다. 위의 (2) 번 코드를 with open(file_name) as file_object: 문으로 바꿔주면 아래와 같습니다. 



# Using the with statement the file is automatically closed

with open('myfile.txt', 'r') as MyFile:

    MyString = MyFile.read()

    print(MyString)

    # no need for MyFile.close()


[Out]: Open, read, write and close a file using Python

 




  (4) 텍스트 모드에서 인코딩, 디코딩 에러 발생 시 처리 : errors


가령, 파일에서 데이터를 읽거나 쓰는 와중에 에러가 발생했을 시 무시하고 싶다면 open('file.txt', 'rw', errors = 'ignore') 라고 설정을 해주면 됩니다. 


errors 매개변수 

error 처리 방법 

 'strict'

 인코딩 에러 발생 시 ValueError 예외

 'ignore'

 에러 무시

 'replace'

 대체 기호 삽입 (예: "?")

 'surrogateescape'

 U+DC80~U+DCFF 사이의 유니코드 사용자 자유 영역의 잘못된 바이트를 code points 로 나타냄

 'xmlcharrefreplace'

 파일을 쓸 때 파일에 기록하려는 텍스트 안의 지정된 인코딩에서 지원되지 않는 문자를 &#NNN; 의 XML 문자 참조로 바꿔서 기록

 'backslashreplace'

 파일을 쓸 때 현재 인코딩에서 지원되지 않는 문자를 역슬래시(back slash, \)로 시작되는 escape sequence로 바꿔서 기록



다음번 포스팅에서는 줄 단위로 텍스트 파일을 읽고 쓰는 방법을 소개하겠습니다. 


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 연속형 변수를 여러개의 구간별로 구분하여 범주형 변수로 변환(categorization of a continuous variable by multiple bins) 하는 두가지 방법을 비교하여 설명하겠습니다. 


(1) np.digitize(X, bins) 를 이용한 연속형 변수의 여러개 구간별 범주화

(2) pd.cut(X, bins, labels) 를 이용한 연속형 변수의 여러개 구간별 범주화 





np.digitize(X, bins)와 pd.cut(X, bins, labels)  함수가 서로 비슷하면서도 사용법에 있어서는 모든 면에서 조금씩 다르므로 각 함수의 syntax에 맞게 정확하게 확인하고서 사용하기 바랍니다. 



[ np.digitize()와 pd.cut() 비교 ]


 구분

 np.digitize(X, bins)

pd.cut(X, bins, labels) 

 bins=[start, end]

 [포함, 미포함)

 (미포함, 포함)

 bin 구간 대비 

 작거나 큰 수

 bin 첫 구간 보다 작으면 [-inf, start)

 --> 자동으로 '1'로 digitize 


 bin 마지막 구간 보다 크면 [end, inf)

 --> 자동으로 bin 순서에 따라 digitize

 bin 첫번째 구간보다 작으면 --> NaN


 bin 마지막 구간보다 크면 --> Nan

 label

 0, 1, 2, ... 순서의 양의 정수 자동 설정

 사용자 지정 가능 (labels option)

 반환 (return)

 numpy array

 a list of categories with labels




  (1) np.digitize(X, bins) 를 이용한 연속형 변수의 여러개 구간별 범주화


먼저 예제로 사용할 간단한 pandas DataFrame을 만들어보겠습니다. 



import pandas as pd

import numpy as np


df = pd.DataFrame({'col': np.arange(10)})

df

col
00
11
22
33
44
55
66
77
88
99





이제 np.digitize(X, bins=[0, 5, 8]) 함수를 사용해서 {[0, 5), [5, 8), [8, inf)} 구간 bin 별로 {1, 2, 3} 의 순서로 양의 정수를 자동으로 이름을 부여하여 'grp_digitize'라는 이름의 새로운 칼럼을 df DataFrame에 만들어보겠습니다. 


참고로 '(' 또는 ')'는 미포함 (not included), '[' 또는 ']' 보호는 포함(included)을 나타냅니다. 



bins=[0, 5, 8]


# returns numpy array

np.digitize(df['col'], bins)

[Out]: array([1, 1, 1, 1, 1, 2, 2, 2, 3, 3])


df['grp_digitize'] = np.digitize(df['col'], bins)

df

[Out]:

colgrp_digitize
001
111
221
331
441
552
662
772
883
993

 





  (2) pd.cut(X, bins, labels) 를 이용한 연속형 변수의 여러개 구간별 범주화 


이번에는 pd.cut(X, bins=[0, 5, 8]) 을 이용하여 {(0, 5], (5, 8]} 의 2개 구간별로 범주화해보겠습니다. array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 의 각 원소가 어느 bin에 속하는지를 나타내는 category 리스트를 반환합니다. 



import pandas as pd

import numpy as np


df = pd.DataFrame({'col': np.arange(10)})


# pd.cut(미포함, 포함]

bins=[0, 5, 8]


# returns a list of catogiries with labels

pd.cut(df["col"], bins=bins)

[Out]:

0 NaN 1 (0.0, 5.0] 2 (0.0, 5.0] 3 (0.0, 5.0] 4 (0.0, 5.0] 5 (0.0, 5.0] 6 (5.0, 8.0] 7 (5.0, 8.0] 8 (5.0, 8.0] 9 NaN Name: col, dtype: category Categories (2, interval[int64]): [(0, 5] < (5, 8]]


 



위 (1)번의 np.digitize() 가 [포함, 미포함) 인 반면에 pd.cut()은 (미포함, 포함]으로 정반대입니다. 


위 (1)번의 np.digitize() 가 bin 안의 처음 숫자보다 작거나 같은 값에 자동으로 '1'의 정수를 부여하고, bin 안의 마지막 숫자보다 큰 값에 대해서는 bin 순서에 따라 자동으로 digitze 정수를 부여하는 반면에, pd.cut()은 bin 구간에 없는 값에 대해서는 'NaN'을 반환하고 bin 구간 내 값에 대해서는 사용자가 labels=['a', 'b'] 처럼 입력해준 label 값을 부여해줍니다. 



df['grp_cut'] = pd.cut(df["col"], bins=bins, labels=['a', 'b'])

df

[Out]:

colgrp_digitizegrp_cut
001NaN
111a
221a
331a
441a
552a
662b
772b
883b
993NaN





이렇게 연속형 변수를 범주형 변수로 변환을 한 후에 'col' 변수에 대해 groupby('grp_cut') 로 그룹별 합계(sum by group)를 집계해 보겠습니다. 



df.groupby('grp_cut')['col'].sum()

[Out]:
grp_cut
a    15
b    21
Name: col, dtype: int64




'grp_cut' 기준 그룹('a', 'b')별로 합(sum), 개수(count), 평균(mean), 분산(variance) 등의 여러개 통계량을 한번에 구하려면 사용자 정의 함수를 정의한 후에 --> df.groupby('grp_cut').apply(my_summary) 처럼 apply() 를 사용하면 됩니다. 그룹별로 통계량을 한눈에 보기에 좋도록 unstack()을 사용해서 세로로 길게 늘어선 결과를 가로로 펼쳐서 제시해보았습니다. 



# UDF of summary statistics

def my_summary(x):

    result = {

        'sum': x.sum()

        'count': x.count()

        'mean': x.mean()

        'variance': x.var()

    }

    return result



df.groupby('grp_cut')['col'].apply(my_summary).unstack()

[Out]:
sumcountmeanvariance
grp_cut
a15.05.03.02.5
b21.03.07.01.0




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,

지난번 포스팅에서는 무작위로 데이터셋을 추출하여 train set, test set을 분할(Train set, Test set split by Random Sampling)하는 방법을 소개하였습니다. 


이번 포스팅에서는 데이터셋 내 층(stratum) 의 비율을 고려하여 층별로 구분하여 무작위로 train set, test set을 분할하는 방법(Train, Test set Split by Stratified Random Sampling)을 소개하겠습니다. 


(1) sklearn.model_selection.train_test_split 함수를 이용한 Train, Test set 분할

     (층을 고려한 X_train, X_test, y_train, y_test 반환) 


(2)sklearn.model_selection.StratifiedShuffleSplit 함수를 이용한 Train, Test set 분할

    (층을 고려한 train/test indices 반환 --> Train, Test set indexing)

참고로 단순 임의 추출(Simple Random Sampling), 체계적 추출(Systematic Sampling), 층화 임의 추출(Stratified Random Sampling), 군집 추출(Cluster Sampling), 다단계 추출(Multi-stage Sampling) 방법에 대한 소개는 https://rfriend.tistory.com/58 를 참고하세요.

 




  (1) sklearn.model_selection.train_test_split 함수를 이용한 Train, Test set 분할

      (층을 고려한 X_train, X_test, y_train, y_test 반환)


먼저 간단한 예제로 사용하기 위해 15행 2열의  X 배열, 15개 원소를 가진 y 배열 데이터셋을 numpy array 를 이용해서 만들어보겠습니다. 그리고 앞에서 부터 5개의 관측치는 '0' 그룹(층), 6번째부터 15번째 관측치는 '1' 그룹(층)에 속한다고 보고, 이 정보를 가지고 있는 'grp' 리스트도 만들겠습니다. 



import numpy as np


X = np.arange(30).reshape(15, 2)

X

[Out]: array([[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7], [ 8, 9], [10, 11], [12, 13], [14, 15], [16, 17], [18, 19], [20, 21], [22, 23], [24, 25], [26, 27], [28, 29]])


y = np.arange(15)

y

[Out]:

array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])


# stratum (group)

grp = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

grp

[Out]:
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]





이제 scikit-learn model_selection 클래스에서 train_test_split 함수를 가져와서 X_train, X_test, y_train_y_test 데이터셋을 분할해 보겠습니다. 

- X와 y 데이터셋이 따로 분리되어 있는 상태에서 처음과 두번째 위치에 X, y를 각각 입력해줍니다. 

- test_size에는 test set의 비율을 입력하고 stratify에는 층 구분 변수이름을 입력해주는데요, 이때 각 층(stratum, group) 별로 나누어서 test_size 비율을 적용해서 추출을 해줍니다.

- shuffle=True 를 지정해주면 무작위 추출(random sampling)을 해줍니다. 만약 체계적 추출(systematic sampling)을 하고 싶다면 shuffle=False를 지정해주면 됩니다. 

- random_state 는 재현가능성을 위해서 난수 초기값으로 아무 숫자나 지정해주면 됩니다. 



# returns X_train, X_test, y_train, y_test dataset

from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(X, 

                                                    y, 

                                                    test_size=0.2, 

                                                    shuffle=True,

                                                    stratify=grp

                                                    random_state=1004)


print('X_train shape:', X_train.shape)

print('X_test shape:', X_test.shape)

print('y_train shape:', y_train.shape)

print('y_test shape:', y_test.shape)

[Out]:
X_train shape: (12, 2)
X_test shape: (3, 2)
y_train shape: (12,)
y_test shape: (3,)





아래는 X_train, y_train, X_test, y_test 로 각각 분할된 결과입니다. 



X_train

[Out]:
array([[12, 13],
       [ 8,  9],
       [28, 29],
       [ 0,  1],
       [10, 11],
       [ 6,  7],
       [ 2,  3],
       [18, 19],
       [20, 21],
       [22, 23],
       [26, 27],
       [14, 15]])


y_train

[Out]: 
array([ 6,  4, 14,  0,  5,  3,  1,  9, 10, 11, 13,  7])



X_test

[Out]:
array([[16, 17],
       [ 4,  5],
       [24, 25]])



y_test

[Out]: array([ 8,  2, 12])






  (2) sklearn.model_selection.StratifiedShuffleSplit 함수를 이용한 Train, Test set 분할

       (층을 고려한 train/test indices 반환 --> Train, Test set indexing)


(2-1) numpy array 예제


위의 train_test_split() 함수가 X, y를 input으로 받아서 각 층의 비율을 고려해 무작위로 X_train, X_test, y_train, y_test 로 분할된 데이터셋을 반환했다고 하며, 이번에 소개할 StratfiedShuffleSplit() 함수는 각 층의 비율을 고려해 무작위로 train/test set을 분할할 수 있는 indices 를 반환하며, 이 indices를 이용해서 train set, test set을 indexing 하는 작업을 추가로 해줘야 합니다. 위의 (1)번 대비 좀 불편하지요? (대신 이게 k-folds cross-validation 할 때n_splits 를 가지고 층화 무작위 추출할 때는 위의 (1)번 보다 편리합니다)


1개의 train/ test set 만을 분할하므로 n_splits=1 로 지정해주며, test_size에 test set의 비율을 지정해주고, random_state에는 재현가능성을 위해 난수 초기값으로 아무값이 지정해줍니다. 


train_idx, test_idx 를 반환하므로 for loop문을 사용해서 X_train, X_test, y_train, y_test를 X와 y로 부터 indexing해서 만들었습니다. 



i# Stratified ShuffleSplit cross-validator 

# provides train/test indices to split data in train/test sets.

from sklearn.model_selection import StratifiedShuffleSplit


split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=1004)


for train_idx, test_idx in split.split(X, grp):

    X_train = X[train_idx]

    X_test = X[test_idx]

    y_train = y[train_idx]

    y_test = y[test_idx]

 



X_train, y_train, X_test, y_test 값을 확인해보면 아래와 같은데요, 이는 random_state=1004로 (1)번과 같게 설정해주었기때문에 (1)번의 train_test_split() 함수를 사용한 결과와 동일한 train, test set 데이터셋이 층화 무작위 추출법으로 추출되었습니다. 



X_train

[Out]:

array([[12, 13], [ 8, 9], [28, 29], [ 0, 1], [10, 11], [ 6, 7], [ 2, 3], [18, 19], [20, 21], [22, 23], [26, 27], [14, 15]])



y_train

[Out]: array([ 6, 4, 14, 0, 5, 3, 1, 9, 10, 11, 13, 7])



X_test

[Out]:
array([[16, 17],
       [ 4,  5],
       [24, 25]])



y_test

[Out]: array([ 8,  2, 12])





(2-2) pandas DataFrame 예제


위의 (2-1)에서는 numpy array를 사용해서 해보았는데요, 이번에는 pandas DataFrame에 대해서 StratifiedShuffleSplit() 함수를 사용해서 층화 무작위 추출법을 이용한 Train, Test set 분할을 해보겠습니다. 


먼저, 위에서 사용한 데이터셋과 똑같이 값으로 구성된, x1, x2, y, grp 칼럼을 가진 DataFrame을 만들어보겠습니다. 



import pandas as pd

import numpy as np


X = np.arange(30).reshape(15, 2)

y = np.arange(15)


df = pd.DataFrame(np.column_stack((X, y)), columns=['X1','X2', 'y'])

df

X1X2y
0010
1231
2452
3673
4894
510115
612136
714157
816178
918199
10202110
11222311
12242512
13262713
14282914



df['grp'] = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

df

X1X2ygrp
00100
12310
24520
36730
48940
5101151
6121361
7141571
8161781
9181991
102021101
112223111
122425121
132627131
142829141





이제 StratifiedShuffleSplit() 함수를 사용해서 층의 비율을 고려해서(유지한채) 무작위로 train set, test set DataFrame을 만들어보겠습니다. 



from sklearn.model_selection import StratifiedShuffleSplit


split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=1004)


for train_idx, test_idx in split.split(df, df["grp"]):

    df_strat_train = df.loc[train_idx]

    df_strat_test = df.loc[test_idx]


 




층 내 class의 비율을 고려해서 층화 무작위 추출된 DataFrame 결과는 아래와 같습니다. 



df_strat_train

X1X2ygrp
6121361
48940
142829141
00100
5101151
36730
12310
9181991
102021101
112223111
132627131
7141571



df_strat_test

X1X2ygrp
8161781
24520
122425121






정말로 각 층 내 계급의 비율(percentage of samples for each class)이 train set, test set에서도 유지가 되고 있는지 확인을 해보겠습니다. 



df["grp"].value_counts() / len(df)

[Out]:

1 0.666667 0 0.333333 Name: grp, dtype: float64



df_strat_train["grp"].value_counts() / len(df_strat_train)

[Out]:
1    0.666667
0    0.333333
Name: grp, dtype: float64


df_strat_test["grp"].value_counts() / len(df_strat_test)

[Out]:

1 0.666667 0 0.333333 Name: grp, dtype: float64




pandas DataFrame에 대한 무작위 표본 추출 방법https://rfriend.tistory.com/602 를 참고하세요.


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)

728x90
반응형
Posted by Rfriend
,

기계학습에서 모델을 학습하는데 사용하는 train set, 적합된 모델의 성능을 평가하는데 사용하는 test set 으로 나누어놓고 시작합니다. 


이번 포스팅에서는 2차원 행렬 형태의 데이터셋을 무작위로 샘플링하여 Train set, Test set 으로 분할하는 방법을 소개하겠습니다. 


(1) scikit-learn 라이브러리 model_selection 클래스의 train_test_split 함수를 이용하여 train, test set 분할하기

(2) numpy random 클래스의 permutation() 함수를 이용하여 train, test set 분할하기

(3) numpy random 클래스의 choice() 함수를 이용하여 train, test set 분할하기

(4) numpy random 클래스의 shuffle() 함수를 이용하여 train, test set 분할하기




  (1) scikit-learn.model_selection의 train_test_split 함수로 train, test set 분할하기

     (split train and test set using sklearn.model_selection train_test_split())


제일 편리하고 그래서 (아마도) 제일 많이 사용되는 방법이 scikit-learn 라이브러리 model_selection 클래스의 train_test_split() 함수를 사용하는 것일 것입니다. 무작위 샘플링을 할지 선택하는 shuffle 옵션, 층화 추출법을 할 수 있는 stratify 옵션도 제공하여 간단한 옵션 설정으로 깔끔하게 끝낼 수 있으니 사용하지 않을 이유가 없습니다. 


예제로 사용할 간단한 2차원 numpy array의 X와 1차원 numpy array의 y를 만들어보겠습니다. 



import numpy as np


X = np.arange(20).reshape(10, 2)

X

[Out]:
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7],
       [ 8,  9],
       [10, 11],
       [12, 13],
       [14, 15],
       [16, 17],
       [18, 19]])

y = np.arange(10)

y

[Out]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])




(1-1) 순차적으로 train, test set 분할


이제 sklearn.model_selection 의 train_test_split() 함수를 사용해서 train set 60%, test set 40%의 비율로 무작위로 섞는 것 없이 순차적으로(shuffle=False) 분할을 해보겠습니다. 시계열 데이터와 같이 순서를 유지하는 것이 필요한 경우에 이 방법을 사용합니다. suffle 옵션의 디폴트 설정은 True 이므로 만약 무작위 추출이 아닌 순차적 추출을 원하면 반드시 shuffle=False 를 명시적으로 설정해주어야 합니다. 



from sklearn.model_selection import train_test_split


# shuffle = False

X_train, X_test, y_train, y_test = train_test_split(X, 

                                                    y, 

                                                    test_size=0.4, 

                                                    shuffle=False

                                                    random_state=1004)



print('X_train shape:', X_train.shape)

print('X_test shape:', X_test.shape)

print('y_train shape:', y_train.shape)

print('y_test shape:', y_test.shape)

[Out]:
X_train shape: (6, 2)
X_test shape: (4, 2)
y_train shape: (6,)
y_test shape: (4,)



X_train

[Out]: 
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7],
       [ 8,  9],
       [10, 11]])


y_train

[Out]: array([0, 1, 2, 3, 4, 5])





(1-2) 무작위 추출로 train, test set 분할


이번에는 train set 60%, test set 40%의 비율로 무작위 추출(random sampling, shuffle=True)하여 분할을 해보겠습니다. random_state 는 재현가능(for reproducibility)하도록 난수의 초기값을 설정해주는 것이며, 아무 숫자나 넣어주면 됩니다. shuffle=True 가 디폴트 설정이므로 생략 가능합니다. 



# shuffle = True

X_train, X_test, y_train, y_test = train_test_split(X, 

                                                    y, 

                                                    test_size=0.4, 

                                                    shuffle=True

                                                    random_state=1004)


X_train

array([[ 2,  3],
       [ 8,  9],
       [ 6,  7],
       [14, 15],
       [10, 11],
       [ 4,  5]])

 


y_train

array([1, 4, 3, 7, 5, 2])





  (2) numpy random 클래스의 permutation 함수를 이용하여 train, test set 분할하기


이번에는 numpy 라이브러리를 이용해서 train, test set을 분할하는 사용자 정의 함수(user defined function)를 직접 만들어보겠습니다. 방법은 간단합니다. 먼저 np.random.permutation()으로 X의 관측치 개수(X.shape[0])의 정수를 무작위로 섞은 후에, --> train_num만큼의 train set을 슬라이싱하고, test_num 만큼의 test set을 슬라이싱 합니다. 

np.random.seed(seed_number) 는 재현가능성을 위해서 난수 초기값을 설정해줍니다. 



# UDF of split train, test set using np.random.permutation()

# X: 2D array, y:1D array

def permutation_train_test_split(X, y, test_size=0.2, shuffle=True, random_state=1004):

    import numpy as np

    

    test_num = int(X.shape[0] * test_size)

    train_num = X.shape[0] - test_num

    

    if shuffle:

        np.random.seed(random_state)

        shuffled = np.random.permutation(X.shape[0])

        X = X[shuffled,:]

        y = y[shuffled]

        X_train = X[:train_num]

        X_test = X[train_num:]

        y_train = y[:train_num]

        y_test = y[train_num:]

    else:

        X_train = X[:train_num]

        X_test = X[train_num:]

        y_train = y[:train_num]

        y_test = y[train_num:]

        

    return X_train, X_test, y_train, y_test



# create 2D X and 1D y array

X = np.arange(20).reshape(10, 2)

y = np.arange(10)



# split train and test set using by random sampling

X_train, X_test, y_train, y_test = permutation_train_test_split(X, 

                                                                y, 

                                                                test_size=0.4, 

                                                                shuffle=True,

                                                                random_state=1004)


X_train

[Out]:
array([[ 0,  1],
       [12, 13],
       [16, 17],
       [18, 19],
       [ 2,  3],
       [ 8,  9]])

y_train

[Out]: array([0, 6, 8, 9, 1, 4])






  (3) numpy random 클래스의 choice 함수를 이용하여 train, test set 분할하기


(3-1) 다음으로 numpy.random.choice(int_A, int_B, replace=False) 함수를 사용하면 비복원추출(replace=False)로 A개의 정수 중에서 B개의 정수를 무작위로 추출하여 이를 train set의 index로 사용하고, np.setdiff1d() 함수로 train set의 index를 제외한 나머지 index를 test set index로 사용하여 indexing하는 방식입니다. 



def choice_train_test_split(X, y, test_size=0.2, shuffle=True, random_state=1004):

    

    test_num = int(X.shape[0] * test_size)

    train_num = X.shape[0] - test_num

    

    if shuffle:

        np.random.seed(random_state)

        train_idx = np.random.choice(X.shape[0], train_num, replace=False)

        

        #-- way 1: using np.setdiff1d()

        test_idx = np.setdiff1d(range(X.shape[0]), train_idx)

        

        X_train = X[train_idx, :]

        X_test = X[train_idx, :]

        y_train = y[test_idx]

        y_test = y[test_idx]

        

    else:

        X_train = X[:train_num]

        X_test = X[train_num:]

        y_train = y[:train_num]

        y_test = y[train_num:]

        

    return X_train, X_test, y_train, y_test

 



(3-2) 아래는 위의 (3-1)과 np.random.choice()를 사용하여 train set 추출을 위한 index 번호 무작위 추출은 동일하며, test set 추출을 위한 index를 for loop 과 if not in 조건문을 사용하여 list comprehension 으로 생성한 부분이 (3-1)과 다릅니다. 



def choice_train_test_split(X, y, test_size=0.2, shuffle=True, random_state=1004):

    

    test_num = int(X.shape[0] * test_size)

    train_num = X.shape[0] - test_num

    

    if shuffle:

        np.random.seed(random_state)

        train_idx = np.random.choice(X.shape[0], train_num, replace=False)

        

        #-- way 2: using list comprehension with for loop

        test_idx = [idx for idx in range(X.shape[0]) if idx not in train_idx]

        

        X_train = X[train_idx, :]

        X_test = X[train_idx, :]

        y_train = y[test_idx]

        y_test = y[test_idx]

        

    else:

        X_train = X[:train_num]

        X_test = X[train_num:]

        y_train = y[:train_num]

        y_test = y[train_num:]

        

    return X_train, X_test, y_train, y_test

 




  (4) numpy random shuffle() 함수를 이용하여 train, test set 분할하기

    (split train, test set using np.random.shuffle() function)


np.random.shuffle() 함수는 배열을 통째로 무작위로 섞은 배열을 반환합니다. 따라서 무작위로 섞었을 때 X와 y가 동일한 순서로 무작위로 섞인 결과를 얻기 위해서 (4-1) X와 y를 먼저 np.column_stack((X, y)) 를 사용해서 옆으로 나란히 붙인 후에(concatenate), --> (4-2) np.random.shuffle(Xy)로 X와 y 배열을 나란히 붙힌 Xy 배열을 무작위로 섞고 (inplace 로 작동함), --> (4-3) train set 개수 (train_num row) 만큼 위에서 부터 행을 슬라이싱을 하고, X 배열의 열(column) 만큼 슬라이싱해서 X_train set을 만듭니다. (4-4) 무작위로 섞인 Xy 배열로부터 train set 개수(train_num row) 만큼 위에서 부터 행을 슬라이싱하고, y 배열이 제일 오른쪽에 붙여(concatenated) 있으므로 Xy[train_num:, -1] 로 제일 오른쪽의 행을 indexing 해오면 y_train set을 만들 수 있습니다. 



# UDF of split train, test set using np.random.shuffle()

# X: 2D array, y:1D array

def shuffle_train_test_split(X, y, test_size=0.2, shuffle=True, random_state=1004):

    import numpy as np

    

    test_num = int(X.shape[0] * test_size)

    train_num = X.shape[0] - test_num

    

    if shuffle:

        np.random.seed(random_state) # for reproducibility

        Xy = np.column_stack((X, y)) # concatenate first

        np.random.shuffle(Xy)           # random shuffling second

        X_train = Xy[:train_num, :-1]  # slicing from 1 to train_num row, X column

        X_test = Xy[train_num:, :-1]   # slicing from 1 to train_num row, y column

        y_train = Xy[:train_num, -1]

        y_test = Xy[train_num:, -1]

    else:

        X_train = X[:train_num]

        X_test = X[train_num:]

        y_train = y[:train_num]

        y_test = y[train_num:]

        

    return X_train, X_test, y_train, y_test


# shuffle = True

X = np.arange(20).reshape(10, 2)

y = np.arange(10)


X_train, X_test, y_train, y_test = shuffle_train_test_split(X, 

                                                            y, 

                                                            test_size=0.4, 

                                                            shuffle=True)


X_train

[Out]:
array([[ 0,  1],
       [12, 13],
       [16, 17],
       [18, 19],
       [ 2,  3],
       [ 8,  9]])


y_train

[Out]: array([0, 6, 8, 9, 1, 4])




무작위 층화 추출법을 이용한 train set, test set 분할 방법(train and test set split by stratified random sampling in python)은 https://rfriend.tistory.com/520 를 참고하시기 바랍니다. 


np.random.choice() 메소드를 활용한 1-D 배열로 부터 임의확률표본추출하는 방법(Generate a random sample frm a given 1-D array)은 https://rfriend.tistory.com/548 를 참고하시기 바랍니다. 


pandas DataFrame에 대한 무작위 표본 추출 방법은 https://rfriend.tistory.com/602 를 참고하세요.


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,