이번 포스팅에서는 Python numpy 의 메소드, 함수 중에서 


- 최소값, 최대값, 혹은 조건에 해당하는 색인(index) 값을 찾기 

   : np.argmin(), np.argmax(), np.where()


- 최소값, 최대값, 혹은 조건에 맞는 값 찾기 

   : np.min(), np.max(), x[np.where()]


에 대해서 소개하겠습니다. 


분석할 때 꽤 많이 사용되므로 기억해두시면 좋겠습니다. 





  (1) 최소값(min), 최대값(max): np.min(), np.max()


x.min(), np.min(x), min(x) 모두 동일한 결과를 반환합니다. 



In [1]: import numpy as np


In [2]: x = np.array([5, 4, 3, 2, 1, 0])


In [3]: x.min()

Out[3]: 0


In [4]: np.min(x)

Out[4]: 0


In [5]: x.max()

Out[5]: 5


In [6]: np.max(x)

Out[6]: 5

 




  (2) 최소값, 최대값의 색인 위치: np.argmin(), np.argmax()



In [7]: x.argmin()

Out[7]: 5


In [8]: np.argmin(x)

Out[8]: 5


In [9]: x.argmax()

Out[9]: 0


In [10]: np.argmax(x)

Out[10]: 0

 




  (3) 조건에 맞는 값의 색인 위치: np.where()


배열에서 3과 같거나 큰 값을 가지는 색인의 위치를 알고 싶을 때, 


 

In [11]: np.where(x >= 3)

Out[11]: (array([0, 1, 2], dtype=int64),)




(4) 조건에 맞는 값을 indexing 하기: x[np.where()] 


배열에서 3과 같거나 큰 값을 indexing 하고 싶을 때, 



In [12]: x[np.where(x >= 3)]

Out[12]: array([5, 4, 3])

 




  (5) 조건에 맞는 값을 특정 다른 값으로 변환하기

     : np.where(조건, 조건에 맞을 때 값, 조건과 다를 때 값)


배열의 값이 3과 같거나 크면 3으로 변환하고, 3보다 작으면 그대로 값을 유지하고 싶을 때, 

(for loop & if else 조건문을 사용하는 것보다 수십배 빠르므로 매우 유용함)



In [13]: np.where(x >= 3, 3, x)

Out[13]: array([3, 3, 3, 2, 1, 0])

 


 

참고로, 위의 np.where를 사용한 배열 값 변환을 for loop & if else 조건문을 사용해서 써보면 아래와 같습니다. for loop은 데이터 사이즈가 커질 경우 속도가 매우 느려지므로, 위의 대용량 데이터는 벡터화된 연산을 하는 np.where() 함수 사용을 권합니다. .

 

 

In [14]: x_2 = []

    ...: for i in list(x):

    ...: if i >= 3:

    ...: x_2.append(3)

    ...: else:

    ...: x_2.append(i)

    ...:

    ...:


In [15]: x_2 = np.asarray(x_2)


In [16]: type(x_2)

Out[16]: numpy.ndarray


In [17]: x_2

Out[17]: array([3, 3, 3, 2, 1, 0])

 

 

많은 도움이 되었기를 바랍니다. 

 

Posted by R Friend R_Friend