지난번 포스팅에서는 특수한 형태의 행렬, 제로행렬(zero matrix), 전치행렬 (transpose matrix), 대칭행렬 (symmetric matrix), 상삼각행렬 (upper triangular matrix), 하삼각행렬 (lower triangular matrix), 대각행렬 (diagonal matrix), 항등행렬 또는 단위행렬 (identity matrix, I, or unit matrix, U) 등에 대해서 알아보았습니다.

 

이번 포스팅에서는 역행렬(the inverse of a matrix, invertible matrix)에 대해서 소개하겠습니다.  역행렬은 사용처가 많은 중요한 개념이므로, 아래의 정의, 계산 방법, 존재 여부 확인하는 방벙을 숙지하면 좋겠습니다.

 

 

  • 역행렬 (the inverse of a matrix, invertible matrix)

 

역행렬은 n차정방행렬 Amn과의 곱이 항등행렬 또는 단위행렬 In이 되는 n차정방행렬을 말합니다. A*B 와 B*A 모두 순서에 상관없이 곱했을 때 단위행렬이 나오는 n차정방행렬이 있다면 역행렬이 존재하는 것입니다.

 

 

 

아래에 예를  하나 들어봤습니다.

 

 

역행렬은 (1) 가우스 소거법(Gauss-Jordan elimination method), (2) 여인수(cofactor)를 이용해서 풀 수 있습니다. 여인수를 이용한 방법은 복잡해서 보통 가우스 소거법을 주로 사용하는데요, 이번 포스팅에서는 먼저 가우스 소거법을 소개하고, 다음번 포스팅에서 여인수(cofactor)를 이용한 역행렬 구하는 방법을 알아보겠습니다.

 

가우스 소거법은 기본행연산(elementary row operation)을 이용하여 위의 행렬의 곱의 왼쪽 행렬을 단위행렬로 바꾸어가는 과정이라고 보면 되겠습니다. 



[참고] 기본 행연산 (elementary row operation)


   1. 행렬의 한 행을 상수배한다. 

   2. 행렬의 두 행을 맞바꾼다. 

   3. 한 행을 상수배하여 다른 행에 더한다. 


 

 

[ 가우스 소거법 예시 (Gauss-Jordan elimination method) ]

 

 

 

 

 

R로 역행렬을 풀때는 MASS 패키지의 ginv() 함수를 사용합니다.

 

> # the inverse of a matrix, invertible matrix
> raw_data <- c(1, 2, 3, 4)
> A_1 <- matrix(raw_data, byrow=TRUE, nrow=2)
> A_1
     [,1] [,2]
[1,]    1    2
[2,]    3    4
> library(MASS)
> ginv(A_1)
     [,1] [,2]
[1,] -2.0  1.0
[2,]  1.5 -0.5
> A_1%*%ginv(A_1)
             [,1]          [,2]
[1,] 1.000000e+00 -6.661338e-16
[2,] 8.881784e-16  1.000000e+00

 

 

 

base 패키지의 solve() 함수를 사용해도 동일합니다.

 

> solve(A_1)

      [,1] [,2]

[1,] -2.0  1.0

[2,]  1.5 -0.5



 

 

역행렬이 존재하는 n차정방행렬을 정칙행렬(nonsingular matrix)라고 하며, 역행렬이 존재하지 않는 행렬을 특이행렬(singular matrix)라고 합니다.

 

 

역행렬이 존재하는지 여부를 확인하는 방법으로 행렬식(determinant, 줄여서 det)이라는 지표를 사용하는데요, 이 행렬식이 '0'이 아니면 역행렬이 존재하고, 이 행렬식이 '0'이면 역행렬이 존재하지 않습니다.

 

 

[ 역행렬이 존재하는 조건 : det(A) ≠ 0 ]

 

 

 

 

행렬식의 값은 n값에 따라서 달라지는데요, 2차와 3차정방행렬의 행렬식 구하는 공식만 아래에 소개하도록 하겠습니다.

 

 

[ 2차, 3차정방행렬의 행렬식 공식, SARRUS method ]

 

 

 

 

2차정방행렬의 경우 역행렬이 존재하는지를 확인하고 역행렬을 구하는 간단한 공식이 있는데요, 아래 식을 참고하시기 바랍니다.  아래와 같은 공식은 2차정방행렬에만 존재하므로, 3차 이상의 연립방정식을 풀려면 위에서 소개한 가우스 소거법은 알아두시는게 좋겠습니다.

 

 

 

다음번 포스팅에서는 여인수(cofactor)를 이용한 역행렬 계산 방법(☞ 바로가기) 에 대해서 소개하겠습니다.

 

많은 도움이 되었기를 바랍니다.

 

행렬, 벡터 관련 포스팅은 아래 링크를 걸어놓았습니다.

 

행렬 기본 이해

특수한 형태의 행렬

여인수를 활용한 역행렬 계산

행렬의 기본 연산 (+, -, *, /, ^, %*%, colMeans(), rowMeans(), colSums(), rowSums())

벡터의 기본 이해와 연산 (vector: addition, subtraction, multiplication by scalar)

벡터의 곱 (1) 내적 (inner product, dot product, scalar product, projection product)

벡터의 곱 (2) 외적 (outer product, cross product, vector product, tensor product)


 

이번 포스팅이 도움이 되었다면 아래의 공감 ♡ 꾸욱~ 눌러주세요. ^^


Posted by R Friend R_Friend

지난번 포스팅에서는 행렬의 뜻, 형태, 표기법, R로 입력하는 방법에 대해서 소개하였습니다.

 

이번 포스팅에서는 특수한 형태의 행렬, 제로행렬(zero matrix), 전치행렬 (transpose matrix), 대칭행렬 (symmetric matrix), 상삼각행렬 (upper triangular matrix), 하삼각행렬 (lower triangular matrix), 대각행렬 (diagonal matrix), 항등행렬 또는 단위행렬 (identity matrix, I, or unit matrix, U)의 7가지에 대하여 차례대로 알아보겠습니다.  

 

아래에 소개하는 행렬 형태와 표기법도 잘 기억해두시면 나중에 유용할 거예요. 특히 전치행렬, 대각행렬, 단위행렬, 역행렬은 자주 사용하는 편이니 잘 기억해두면 좋겠습니다.

 

 

 

 

(1) 제로행렬 (zero matrix or null matrix)

 

모든 성분이 '0'인 행렬을 제로행렬, 또는 영행렬이라고 합니다.

 

 

 
> # zero matrix
> A_zero <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0), byrow = TRUE, nrow = 3)
> A_zero
     [,1] [,2] [,3]
[1,]    0    0    0
[2,]    0    0    0
[3,]    0    0    0
> 
> B_zero <- matrix(rep(0, 9), byrow = TRUE, nrow = 3)
> B_zero
     [,1] [,2] [,3]
[1,]    0    0    0
[2,]    0    0    0
[3,]    0    0    0

 

 

 

 

 

(2) 전치행렬 (transpose matrix)

 

행이 m개, 열이 n개인 m * n 행렬 (m by n matrix) 의 행과 열을 서로 바꾼 n * m 행렬 (n by m matrix)를 전치행렬이라고 합니다. 아래에 동그라미로 표시한 행렬의 성분들이 전치를 했을 때 서로 어디로 위치가 바뀌었는지를 유심히 살펴보시기 바랍니다.

 

 

 

 

전치행렬은 행렬 우측 상단에 대문자 'T'를 표기합니다.  아래 표기 예시를 참조하세요.

 

 

 
> # transpose matrix
> A <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), byrow = TRUE, nrow = 3)
> A
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
> 
> A_t <- t(A)
> A_t
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9
> 
> 
> B <- matrix(c(4, 5,  6, 7, 8, 9), nc=3)
> B
     [,1] [,2] [,3]
[1,]    4    6    8
[2,]    5    7    9
> 
> B_t <- t(B)
> B_t
     [,1] [,2]
[1,]    4    5
[2,]    6    7
[3,]    8    9

 

 

 

 

 

 

(3) 대칭행렬 (symmetric matrix)

 

대칭행렬이란 대각성분을 중심으로 대칭인 n차정방행렬로서, 원래 행렬과 전치행렬이 동일한 경우를 의미합니다. (* wikipedia : a symmetric matrix is a square matrix that is equal to its transpose)

 

 

 

 

 

 

> # symmetric matrix
> s <- matrix(c(1:25), 5)
> s
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    6   11   16   21
[2,]    2    7   12   17   22
[3,]    3    8   13   18   23
[4,]    4    9   14   19   24
[5,]    5   10   15   20   25
> 
> lower.tri(s, diag=FALSE)
      [,1]  [,2]  [,3]  [,4]  [,5]
[1,] FALSE FALSE FALSE FALSE FALSE
[2,]  TRUE FALSE FALSE FALSE FALSE
[3,]  TRUE  TRUE FALSE FALSE FALSE
[4,]  TRUE  TRUE  TRUE FALSE FALSE
[5,]  TRUE  TRUE  TRUE  TRUE FALSE
> s[lower.tri(s, diag=FALSE)]
 [1]  2  3  4  5  8  9 10 14 15 20
> t(s)[lower.tri(s, diag=FALSE)]
 [1]  6 11 16 21 12 17 22 18 23 24
> 
> s[lower.tri(s, diag=FALSE)] = t(s)[lower.tri(s, diag=FALSE)]
> s
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    6   11   16   21
[2,]    6    7   12   17   22
[3,]   11   12   13   18   23
[4,]   16   17   18   19   24
[5,]   21   22   23   24   25

 

 

 

 

 

(4) 상삼각행렬 (upper triangular matrix)

 

 상삼각행렬은 대각성분 아래의 성분이 모두 '0'인 n차정방행렬입니다.  아래의 색깔 칠해놓은 행렬 예를 보면 금방 이해할 수 있을 거예요.

 

 

R의 base패키지 내 lower.tri(x, diag=FALSE) 함수를 이용하여 상삼각행렬(upper triangular matrix)를 아래에 만들어보았습니다.

 

 

> # upper triangular matrix
> (m_upper <- matrix(1:20, 4, 4))
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16
> 
> lower.tri(m_upper, diag=FALSE)
      [,1]  [,2]  [,3]  [,4]
[1,] FALSE FALSE FALSE FALSE
[2,]  TRUE FALSE FALSE FALSE
[3,]  TRUE  TRUE FALSE FALSE
[4,]  TRUE  TRUE  TRUE FALSE
> m_upper[lower.tri(m_upper, diag=FALSE)] <- c(0)
> m_upper
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    0    6   10   14
[3,]    0    0   11   15
[4,]    0    0    0   16

 

 

 

 

 

(5) 하삼각행렬 (lower triangular matrix)

 

하삼각행렬은 대각성분 위의 성분이 모두 '0'인 n차정방행렬로서, 상삼각행렬과 '0'이 있는 위치가 대각선으로 반대임을 알 수 있습니다.

 

 

R의 base패키지 내 upper.tri(x, diag=FALSE) 함수를 이용하여 하삼각행렬(lower triangular matrix)를 아래에 만들어보았습니다. 

 

 
> # lower triangular matrix
> (m_lower <- matrix(1:20, 4, 4))
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16
> 
> upper.tri(m_lower, diag=FALSE)
      [,1]  [,2]  [,3]  [,4]
[1,] FALSE  TRUE  TRUE  TRUE
[2,] FALSE FALSE  TRUE  TRUE
[3,] FALSE FALSE FALSE  TRUE
[4,] FALSE FALSE FALSE FALSE
> m_lower[upper.tri(m_lower, diag=FALSE)] <- c(0)
> m_lower
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    2    6    0    0
[3,]    3    7   11    0
[4,]    4    8   12   16

 

 

 

 

 

(6) 대각행렬 (diagonal matrix)

 

대각행렬은 대각성분 이외의 모든 성분이 모두 '0'인 n차정방행렬을 말하며, 아래 예의 대각행렬의 경우 대각성분만을 따다가 diag(1, 2, 3, 4)로 표기합니다.

(* wikipedia : a diagonal matrix is a matrix (usually a square matrix) in which the entries outside the main diagonal (↘) are all zero. The diagonal entries themselves may or may not be zero.)

 

 

 

위에서 소개했던 제로행렬(zero matrix)과 바로 아래에 소개할 단위행렬(unit matrix) 또는 항등행렬(identity matrix)도 대각행렬(diagonal matrix)에 속한다고 할 수 있겠습니다.

 

그리고 대각행렬은 상삼각행렬(upper triangular matrix) 또는 하삼각행렬(lower triangular matrix)에 속한다고도 할 수 있겠습니다.

 

 

R의 diag(A) 함수를 사용해서 위의 diag(1, 2, 3, 4) 대각행렬을 만들어보겠습니다.

 

 

 

> # diagonal matrix
> A <- c(1, 2, 3, 4)
> diag(A)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    2    0    0
[3,]    0    0    3    0
[4,]    0    0    0    4
 

 

 

 

대각행렬의 곱셉, P승은 아래와 같이 각 성분의 P승이 되는 재미있는, 유용한 특성을 가지고 있습니다.

 

 

 

 

 

(7) 항등행렬 또는 단위행렬 (identity matrix, I, or unit matrix, U)

 

항등행렬 또는 단위행렬은 대각성분이 모두 '1'이고 그 이외의 모든 성분은 '0'인 n차정방행렬을 말하며, identity matrix 의 첫 대문자를 따서 'I' 로 표기하거나 unit matrix의 첫 대문자를 따서 'U'로 표기합니다. (일부 수학책에서는 독일어 Einheits matrix의 첫 대문자를 따서 'E'로 표기하기도 함)

 

(* wikipedia : the identity matrix or unit matrix of size n is the n × n square matrix with ones on the main diagonal and zeros elsewhere)

 

 

 

항등행렬 또는 단위행렬 In을 행렬 Amn 에 곱하면 그대로 Amn이 됩니다.  어떤 수에 '1'을 곱하면 그대로 원래의 수가 되기 때문입니다.

 

 

 

 

R의 diag(k) 함수로 k by 항등행렬 또는 단위행렬을 만들 수 있습니다.

 

 

> # identity matrix or unit matrix : diag(k) > diag(4) [,1] [,2] [,3] [,4] [1,] 1 0 0 0 [2,] 0 1 0 0 [3,] 0 0 1 0 [4,] 0 0 0 1

> 

> diag(6) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 0 0 0 0 0 [2,] 0 1 0 0 0 0 [3,] 0 0 1 0 0 0 [4,] 0 0 0 1 0 0 [5,] 0 0 0 0 1 0 [6,] 0 0 0 0 0 1

 

 

 

 

항등행렬 또는 단위행렬의 역행렬(inverse matrix, 바로 아래에 설명)은 단위행렬입니다.  단위행렬과 역행렬은 매우 중요한 행렬이므로 꼭 잘 이해를 해두시는게 좋습니다.

 

 

다음번 포스팅에서는 역행렬(the inverse of a matrix, invertible matrix)에 대해서 소개하겠습니다.

 

많은 도움이 되었기를 바랍니다.

 

행렬, 벡터 관련 이전 포스팅은 아래 링크를 걸어놓았습니다.

 

행렬 기본 이해

가우스 소거법을 활용한 역행렬 계산

여인수를 활용한 역행렬 계산

행렬의 기본 연산 (+, -, *, /, ^, %*%, colMeans(), rowMeans(), colSums(), rowSums())

벡터의 기본 이해와 연산 (vector: addition, subtraction, multiplication by scalar)

벡터의 곱 (1) 내적 (inner product, dot product, scalar product, projection product)

벡터의 곱 (2) 외적 (outer product, cross product, vector product, tensor product)


 

이번 포스팅이 도움이 되었다면 아래의 공감 ♡ 꾸욱~ 눌러주세요. ^^

 

Posted by R Friend R_Friend

경영과학/최적화, 다변량 통계분석, 머신러닝을 제대로 이해하고 활용하려면 선형대수(linear algebra)와 미적분(differential and integral)에 대한 이해가 필요합니다. 상호 연결되어 있고 영향을 미치는 복잡한 세상에서 단변량만을 가지고 문제를 풀기에는 역부족이기 때문에 다수의 변수를 가진 문제를 풀어야 하는 경우가 대부분입니다.

 

따라서, 경영과학/최적화에 들어가기 전에 그 기초가 되는 행렬(matrix)에 대한 기초와 행렬 연산에 대해서 알아보도록 하겠습니다.  행렬을 사용하면 1차 연립방정식을 시각적으로 보기에 깔끔하고 편리하게 나타낼 수 있으며, 최적화 기법 중에 선형계획법을 풀 때 이를 사용할 수 있고, 컴퓨터로 해를 찾을 때도 행렬식으로 목적함수와 제약조건을 입력하게 됩니다.  왜 행렬에 대한 기본 개념과 연산에 대해서 먼저 짚고 넘어가야 하는지 이해가 되셨을 겁니다.  

 

이공계 계열을 전공한 분이라면 기본적으로 선형대수, 미적분은 배웠을 텐데요, 문과생들은 그렇지 못하다보니 처음에 최적화, 다변량 통계분석에 나오는 수식을 보고는 이게 무슨 소리인지 이해를 못해서 어려움을 겪고, 심하면 좌절하고 포기하기도 쉽답니다. (제가 처음에 그랬습니다. 시계열분석 공부하다가 수식에 질려서 토할 것 같은 어지럼증을...^^;)

 

 

행렬(matrix)이란 숫자나 상징, 표현을 직사각형 또는 정사각형 모양으로 m행과 n열로 배열하고 괄호로 묶은 것을 말합니다(* Wikipedia : "In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns").  괄호 안의 각각의 수를 성분(entries)이라고 하며, m행 n열로 구성된 행렬은 'm x n 행렬'이라고 말하며, 아래와 같이 표기합니다.

 

 

[ m * n 행렬 (m * n matrix) ]

 

 

 

 

행(column)과 열(row)의 개수가 n개로 같은 행렬을' n차 정방행렬(a square matrix of order n)'이라고 하며, 아래와 같이 표기합니다.

 

 

[ n차 정방행렬 (a square matrix of order n) ]

 

 

 

 

1차 연립방정식을 행렬을 이용해서 표기하면 아래와 같이 할 수 있습니다. 왼쪽의 연립방정식 대비 오른쪽의 행렬이 많이 깔끔해보이지요?  (경영과학 처음 배울 때 가우스 소거법에 아래 행렬 표기를 사용한답니다.)

 

 

[ 1차 연립방정식(simultaneous equations) 의 행렬 표기 ]

 

 

R을 활용하여 행렬(matrix)를 입력하는 방법에는 (1) rbind(), (2) cbind(), (3) matrix()의 3가지가 있습니다.  아래에 차례대로 소개하였습니다.

 

 

 

> ##---------------------------------------------------------------------
> ## matrix algebra
> ##---------------------------------------------------------------------
> 
> # data key-in way 1 : rbind()
> row_1 <- c(1, 2, 3, 4)
> row_2 <- c(5, 6, 7, 8)
> 
> data_rbind <- rbind(row_1, row_2)
> data_rbind
      [,1] [,2] [,3] [,4]
row_1    1    2    3    4
row_2    5    6    7    8
> 
> # column naming
> colnames(data_rbind) <- paste("col_", 1:4, sep="")
> 
> data_rbind
      col_1 col_2 col_3 col_4
row_1     1     2     3     4
row_2     5     6     7     8
> 
> 
> # data key-in way 2 : cbind()
> column_1 <- c(1, 5)
> column_2 <- c(2, 6)
> column_3 <- c(3, 7)
> column_4 <- c(4, 8)
> 
> data_cbind <- cbind(column_1, column_2, column_3, column_4)
> data_cbind
     column_1 column_2 column_3 column_4
[1,]        1        2        3        4
[2,]        5        6        7        8
> 
> # row naming
> rownames(data_cbind) <- paste("row_", 1:2, sep="")
> data_cbind
      column_1 column_2 column_3 column_4
row_1        1        2        3        4
row_2        5        6        7        8
> 
> 
> # data key-in way 3 : matrix()
> raw_data <- c(1, 2, 3, 4, 5, 6, 7, 8)
> data_matrix <- matrix(raw_data, byrow=TRUE, nrow=2)
> data_matrix
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
> 
> # giving names to the rows and columns of the data table : dimnames()
> dimnames(data_matrix) <- list("row" = c("row_1", "row_2"), 
+                               "column" = c("col_1", "col_2", "col_3", "col_4"))
> 
> data_matrix
       column
row     col_1 col_2 col_3 col_4
  row_1     1     2     3     4
  row_2     5     6     7     8

 

 

 

 

행렬에서 행이나 열을 하나만 인덱싱하게 되면 벡터로 바뀌게 되는데요, 벡터가 아니라 행렬로 계속 차원을 유지하고 싶을 경우에는 drop=FALSE 옵션을 써주면 됩니다.

 

> # make it sure to be a matrix : drop = FALSE > data_index <- data_matrix[,2] > data_index row_1 row_2 2 6 > > class(data_matrix) [1] "matrix" > class(data_index) [1] "numeric" > > str(data_matrix) num [1:2, 1:4] 1 5 2 6 3 7 4 8 - attr(*, "dimnames")=List of 2 ..$ row : chr [1:2] "row_1" "row_2" ..$ column: chr [1:4] "col_1" "col_2" "col_3" "col_4" > str(data_index) Named num [1:2] 2 6 - attr(*, "names")= chr [1:2] "row_1" "row_2" > > > data_drop_false <- data_matrix[, 2, drop = FALSE] > data_drop_false column row col_2 row_1 2 row_2 6 > > class(data_drop_false) [1] "matrix" > str(data_drop_false) num [1:2, 1] 2 6 - attr(*, "dimnames")=List of 2 ..$ row : chr [1:2] "row_1" "row_2" ..$ column: chr "col_2"

 

 

 

 

다음번 포스팅에서는 특수한 형태의 행렬에 대해서 알아보도록 하겠습니다. 

 

많은 도움 되었기를 바랍니다.  

 

행렬, 벡터 관련 포스팅은 아래 링크를 걸어놓았습니다.

 

특수한 형태의 행렬

가우스 소거법을 활용한 역행렬 계산

여인수를 활용한 역행렬 계산

행렬의 기본 연산 (+, -, *, /, ^, %*%, colMeans(), rowMeans(), colSums(), rowSums())

벡터의 기본 이해와 연산 (vector: addition, subtraction, multiplication by scalar)

벡터의 곱 (1) 내적 (inner product, dot product, scalar product, projection product)

벡터의 곱 (2) 외적 (outer product, cross product, vector product, tensor product)

 

 

이번 포스팅이 도움이 되었다면 아래의 공감 ♡ 꾸욱~ 눌러주세요. ^^

 

Posted by R Friend R_Friend