'Partitioning clustering'에 해당되는 글 1건

  1. 2016.08.06 [R 군집분석 (Clsuter Analysis) ] (2) K-중심 군집(K-Centroid Clustering) : K-means Clustering (2)

지난번 포스팅에서는 (1) 응집형 계층적 군집화(Agglomerative Hierarchical Clustering) 방법 5가지(단일연결법, 완전연결법, 평균연결법, 중심연결법, Ward연결법) 중에서, 오차제곱합의 증분으로 군집 간 (비)유사성을 측정해서 군집화를 하는 Ward 연결법에 대해서 알아보았습니다.

 

 

이번 포스팅부터는 (2) 분할적 군집화(Partitional Clustering) 기법 중에서 프로토타입 기반(Prototype-based)K-중심 군집화(K-centroid clustering)에 대해서 알아보도록 하겠습니다.

 

 

[ 분할적 군집 (Partitional Clustering, Non-hierarchical Clustering) ]

 

 

 

 

복습하는 차원에서 한번 더 복기를 하자면,

 

- 응집형 계층적 군집화(Agglomerative Hierarchical Clustering)은 각각의 객체에서 시작해서 유사성 척도(proximity measure)에 의거해 유사한 (거리가 짧은) 객체들을 Tree 형태의 계층적 군집으로 차근 차근 묶어가는 기법입니다. (a set of nested clusters organized as a hierarchical trees).  일단 한번 군집으로 묶이면 그 객체는 계속 그 군집에 속하게 되고 변동이 없으며, 계층 구조의 Tree에서 어느 수준을 기준으로 하느냐에 따라서 군집이 달라지게 됩니다.

 

- 분할적 군집화(Partitional Clustering)은 객체가 하나의 군집에 exclusive하게 속하도록 군집을 형성합니다. (A division data objects into non-overlapping subsets such that each data object is in exactly one subset). 분할 방법에는 프로토타입 기반(Prototype-based), 분포 기반(distribution-based), 밀도 기반(Density-based), 그래프 기반(Graph-based) 기법이 있습니다.

 

 

참고로,

- Hard clustering은 객체별로 어느 군집에 속할지를 명시적으로 할당하는 기법이며,

K-중심군집은 Hard clustering에 속합니다.

 

- Soft clustering은 각 객체가 어느 군집에 속할지를 가중치(weight)나 확률(probability)로서 가능성 정도를 나타내주는 기법으로서, Fuzzy Clustering과 혼합분포군집(Mixture Distribution Clustering)이 이에 속합니다.

 

 

 

이번 포스팅에서 소개할 분할적 군집화는 이중에서 프로토타입 기반(Prototype-based) 기법 중에서도 K-중심군집(K-centroid Clustering) 모형이 되겠습니다.

 

프로토타입 기반 군집화(Prototype-based Clustering)는 미리 정해놓은 각 군집의 프로토타입에 각 객체가 얼마나 유사한가 (혹은 가까운가)를 가지고 군집을 형성하는 기법입니다. 

 

K-중심군집에서는 연속형 데이터의 경우 평균(Mean)이나 중앙값(Median)을 그 군집의 프로토타입으로 하며, 이산형 데이터인 경우는 최빈값(Mode)이나 메도이드(Medoid)라고 해서 해당 군집을 가장 잘 표현할 수 있는 측도를 정해서 프로토타입으로 정하게 됩니다.

 

보통 군집분석을 공부한다고 했을 때 가장 많이 회자되고, 가장 처음에 배우는 기법이 아마도 'K-평균 군집화(K-means Clustering)이 아닐까 싶습니다.  그런데 앞서 소개드린 것처럼 군집분석 기법에는 정말 많은 알고리즘이 있습니다. K-평균 군집은 그 중에서도 일부에 해당하는 기법일 뿐이며, 프로토타잎도 데이터 형태에 따라서 '평균(Mean)'을 쓰는 K-means Clustering, '중앙값(Median)'을 쓰는 K-median Clustering, '메도이드(Medoid)'를 쓰는 K-medoid Clustering 등으로 세분화된다는 점은 알아두시면 좋겠습니다.  이들을 모두 묶어서 'K-중심군집(K-centroid Clustering)'이라고 합니다.

 

여기서 'K'는 '군집의 수(number of clusters)'를 나타내는 모수(parameter)로서, 분석가가 사전에 정해주어야 합니다.  참고로, 군집의 수 K를 미리 지정해주어야 하는 군집분석 기법으로는 이번 포스팅의 주제인 K-중심군집(K-centroid Clustering), 그리고 퍼지군집(Fuzzy Clustering), 혼합분포 군집(Mixture Distribution Clustering) 등이 있습니다.

 

군집의 수 K를 정하는 문제가 참 중요한데요, 좀 어렵고 애매한 부분이 있습니다.  저는 보통은 업에 대한 이해를 바탕으로 분석 목적을 감안하여 복수의 k를 지정해서 군집분석을 수행한 후에, 군집에 대한 profiling을 해보고, 가장 적합하다고 판단되는 k를 정하곤 했습니다.  다분히 분석가의 업에 대한 경험/이해도와 주관이 많이 들어가고, Biz 활용 목적과 현실적 제약조건도 고려해야 하며, 또 시행착오와 profiling을 통한 오랜 탐색이 필요한 접근법입니다. (Science가 아니라 Art?)^^;  

 

아래의 괄호안에 자료에 보니 계량적으로 최적의 k 를 찾아가는 기법이 소개되어 있습니다.  이 기법들을 여기서 소개하려면 얘기가 너무 길어지므로 pass하겠으며, 관심있는 분은 아래 링크한 위키글을 참고하시기 바랍니다. (군집 수 k 정하는 기법 참고 자료 ☞ https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set)

 

 

[ 군집의 수 K 정하기의 애미모호함 ?  어려움?? ]

 

 

 

 

이번 포스팅에서는 일반적으로 가장 많이 사용하는 'K-평균 군집(K-means Clustering)'에 대해서만 대표로 설명을 하도록 하겠습니다.

 

 

K-평균 군집(K-means Clustering)의 원리를 알아보면요,

 

1) 군집 내 응집도 최대화(maximizing cohesion within cluster) : 군집 內 중심(centroid)과 해당 군집의 각 객체 간 거리의 합 최소화

 

2) 군집 간 분리도 최대화(maxizing separation between clusters) : 각 군집의 중심(centroid) 間 거리 합 최대화 

 

의 두 가지 목적함수를 만족하는 해(解, solution)를 찾는 것입니다.

 

 

[ K-평균 군집의 개념 및 원리 (Concept and Principle of K-means Clustering) ]

 

 

 

즉, 군집분석은 결국 위의 두 목적함수에 대한 최적화 (optimization of global objective function) 문제임을 알 수 있습니다.  복잡도(complexity)를 살펴보면, 군집의 수가 k, 차원의 수가 d, 객체의 수가 n 일 때 입니다. (* 출처 : https://en.wikipedia.org/wiki/K-means_clustering)  기본적으로 객체의 수(n)가 많을 수록 시간이 오래걸리며, 특히 변수의 수(d)와 군집의 수(k)가 늘어날 수록 지수적으로 계산 시간이 증가함을 알 수 있습니다.  따라서 허접한 변수들 몽땅 때려넣고 군집화하라고 컴퓨터한테 일 시킬 것이 아니라, 똘똘하고 핵심적인 변수를 선별해서 차원을 줄인 후에 군집분석을 실행하는 것이 연산시간을 줄이는 측면에서나, 또 Biz. 목적에 맞게 잘 군집화가 되도록 하는 측면에서나 중요합니다.

 

 

다음으로, 'K-중심군집 알고리즘(K-centroid Clustering Algorithm)'에 대해서 알아보겠습니다.  알고리즘은 알고나면 허무할 정도로 정말 쉽습니다. ^^' 컴퓨터야 중심과 객체 간 거리를 반복적으로 계산하느라 죽어나겠지만 말이지요.

 

 

[ 'K-중심군집 알고리즘(K-centroid Clustering Algorithm) ]

 

 

0: Select number of clusters, K

 

1: Select K points as the initial centroids


2: Repeat


3:     Form K clusters by assigning all points
       to the closest centroid


4:     Recompute the centroid of each cluster


5: Until The centroids don't change 

 

 

0: 군집의 수 K 결정

 

1: K개 군집의 초기 중심 선정

 

2: Repeat

 

3:    객체와 K군집의 중심과 거리가 가장 가까운

      군집으로 각 객체를 할당

 

4:    객체와 새로 바뀐 K군집의 중심과의

      거리를 재계산

 

5: Until K군집 중심이 바뀌지 않을 때까지 반복

 

 

 

 

위 알고리즘을 도식화해서 예를 들어보면 아래와 같습니다. 매번의 반복(iteration) 마다 군집의 중심이 새로 계산되고, 새로 바뀐 중심과 각 객체간 거리가 다시 계산되면서 군집이 계속 동적으로 바뀌다가 더 이상 변동이 없이 수렴될 때까지 반복을 하게 됩니다. 

 

 

[ K-평균군집화의 개념적인 예시 (Conceptual exmaple of K-means Clustering) ]

 

 

 

위의 개념적 예시 그림에서도 짐작할 수 있듯이, 초기 중심값(initial centroid)가 바뀌면 군집 묶이는게 바뀔 수 있습니다.  이런 점때문에 B2C에서 고객세분화(customer segmentation)에 K-means clustering을 적용하게 되면 매번 군집화를 시도할 때마다 군집에 묶이는 고객이 달라질 수 있어서 문제가 될 소지가 있습니다.  (참고로, R에서 set.seed = 1234 처럼 set.seed() 함수를 사용하면 무작위수가 매번 실행때마다 동일하게 할 수 있음)

 

 

이번 포스팅은 K-평균 군집(K-means Clustering)을 다룬다고 했으므로, 중심(centroid)는 '평균(Mean)'이 되겠지요.

 

그리고 유사도(proximity, similarity)는 보통은 유클리드 거리(Euclidean distance,

) 혹은 유클리드 제곱 거리(SSE, SUM of Squared Error, R에서 사용하는 거리)를 사용합니다.  데이터 특성에 따라서 유사도 측도로서 적합한 Measure를 선택해서 분석하시면 되겠습니다. (☞ 유사도 측정 Distance Measures 참고 : http://rfriend.tistory.com/199)

 

거리를 가지고 유사성을 측정한다고 했는데요, 이러다 보니 K-평균군집(K-means Clustering)은 노이즈나 이상치에 민감(Sensitive to Noise and Outlier)한 단점이 있습니다.  평균보다는 중앙값이 이상치에 덜 민감하므로 이상치로 인한 왜곡이 우려되면 K-중앙값군집(K-median Clustering)이 대안이 될 수 있겠네요.  아니면 탐색적 분석 단계에서 이상치를 제거하는 것도 방법이 될 수 있겠고요.

 

 

마지막으로, 만약 여러 변수들의 계측 단위(scale)이 서로 다르다면 사전에 표준화(standardization)를 해줄 필요가 있습니다.  안그러면 측정 단위가 큰 특정 한, 두개의 변수에 의해 군집화가 휘둘릴 수 있기 때문입니다.  보통 표준정규분포로 z 표준화를 많이 사용합니다. (R의 scale() 함수)

 

 


 

 

K-중심 군집(K-Centroid Clustering) 이론에 대해서는 왠만큼 소개를 한듯 하니, 이제 데이터셋을 가지고 R script 를 써가면서 실습을 해보겠습니다.  R script 가 무척 짧아서 당황하실수도 있다는 점 미리 안내드립니다. ㅋㅋ

 

실습 데이터셋은 iris 입니다. 

Sepal.Length, Sepal.Width, Petal.Length, Petal.Width 의 4개의 변수를 가지고 있고, 150개의 관측치를 가지고 있는 데이터프레임입니다.

 

결측값은 없이 깨끗하네요.

 

측정 척도의 단위(scale)가 4개 변수 모두 길이를 재는 동일 단위이므로 iris 데이터셋의 경우 별도로 표준화르 할 필요는 없겠네요. 

 

> ##-----------------------------------
> ## K-centroid clustering
> ##-----------------------------------
> 
> # dataset : iris
> str(iris)
'data.frame':	150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
> 
> # checking missing value
> colSums(is.na(iris))
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species 
           0            0            0            0            0

 

 

 

 

산포도(Scatter Plot)를 그려보면 아래와 같습니다.

 

> # scatter plot of iris
> panel.fun <- function(x, y, ...) {
+   horizontal <- (par("usr")[1] + par("usr")[2]) / 2; 
+   vertical <- (par("usr")[3] + par("usr")[4]) / 2; 
+   text(horizontal, vertical, format(abs(cor(x,y)), digits=2)) 
+ }
> 
> pairs(iris[1:4], 
+       pch = 21, bg = c("red","green3","blue")[unclass(iris$Species)], 
+       upper.panel=panel.fun, 
+       main = "Statter Plot of Iris Dataset")

 

 

 

 

K-means Clustering이 중심과의 거리를 가지고 군집을 묶는 방법이다보니, 위의 산포도를 보면 Petal.Length와 Petal.Width 의 두개의 변수를 가지고 군집화(Clustering)를 하는 것이 제일 좋을 것 같군요.(아마 Sepal.Width와 Petal.Length 의 두개 변수를 사용해서 K-means Clustering을 돌리면 좌측 상단의 두 Species가 반반씩 잘못 섞여서 군집화가 될겁니다. 왜 그럴지는 한번 생각해보시길...) 

 

Petal.Length와 Petal.Width 로 산점도를 그려보면 아래와 같습니다.

 

[plot 1 : original scatter plot]

 

 

> # Original Scatter Plot of Iris Petal.Length & Petal.Width 
> install.packages("ggplot2")
trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.3/ggplot2_2.1.0.zip'
Content type 'application/zip' length 2001758 bytes (1.9 MB)
downloaded 1.9 MB

package ‘ggplot2’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
	C:\Users\Administrator\AppData\Local\Temp\Rtmpi20q05\downloaded_packages
> library(ggplot2)
> iris_plot <- ggplot(data=iris, aes(x=Petal.Length, y=Petal.Width, colour=Species)) + 
+   geom_point(shape=19, size=4) + 
+   ggtitle("Original Scatter Plot of Iris Petal.Length & Petal.Width")
>   
> iris_plot
> # text annotation with Species Name
> iris_plot_2 <- iris_plot +
+   annotate("text", x=1.5, y=0.7, label="Setosa", size=5) + # text annotation
+   annotate("text", x=3.5, y=1.5, label="Versicolor", size=5) + 
+   annotate("text", x=6, y=2.7, label="Virginica", size=5)
> 
> iris_plot_2
> # adding shadowed box
> iris_plot_3 <- iris_plot_2 +
+   annotate("rect", xmin=0, xmax=2.6, ymin=0, ymax=0.8, alpha=0.1, fill="red") + 
+   annotate("rect", xmin=2.6, xmax=4.9, ymin=0.8, ymax=1.5, alpha=0.1, fill="green") + 
+   annotate("rect", xmin=4.8, xmax=7.2, ymin=1.5, ymax=2.7, alpha=0.1, fill="blue")
> 
> iris_plot_3

 

 

 

 

 

Noise나 이상값(outlier)는 없어보이므로 별도 전처리 없이 그대로 데이터 가져다 쓰면 되겠네요.

 

자, 이제 드디어 K-평균군집(K-means Clustering)을 R로 돌려보겠습니다.  군집의 개수 K = 3 으로 하겠습니다. (iris 품종으로 Setosa, Versicolor, Virginica 의 3종류가 있다고 우리가 이미 알고 있기 때문에 K 3으로 한 것임.  일반적으로 K-평균군집분석을 할 때 Y Label에 대해서 모르거나 없는 상태에서 비지도학습(Un-supervised Learning)으로서 데이터 속에 숨겨진 패턴을 컴퓨터 보고 한번 찾아보라고 마이닝을 시키게 됨.  다시 한번 말하지만, 이번 iris 데이터셋은 Y Lable을 알고 있는 상태에서 K-평균군집분석 결과를 좀더 이해하기 쉽도록 비교해서 보여주는 것 뿐이며, Y Lable 모른 채, 혹은 없는 상태에서 군집분석을 수행하게 됨)

 

K-평균군집의 R script는..... 음..... 아래 한줄이 끝입니다. -_- 

 

kmeans(dataset, k)  # k : number of clusters

 

> # K-means clustering with Petal.Length and Petal.Width
> iris_k_means <- kmeans(iris[,c("Petal.Length", "Petal.Width")], 3) 

 

 

 

K-평균군집의 객체 iris_k_means 를 호출하면 아래와 같이 K-평균 군집 결과를 일목요연하게 볼 수 있습니다. 

 

- K-means clustering with 3 clusters of sizes 50, 52, 48

   : 군집의 개수(k)가 3개, 군집 1/2/3별 크기가(개체 개수) 50개, 52개, 48개

- Cluster means

   : 군집 1/2/3 별 두개의 변수 Petal.Length, Petal.Width의 평균 좌표 

     (=> profiling 하기에 good!)

- Clustering vector

   : 각 개체별 군집 벡터
- Within cluster sum of squares by cluster

   : 각 군집의 중심(centroid)와 각 군집에 속한 개체간 거리의 제곱합

- Available components

   : 군집분석 결과의 구성요소
     => 필요한거 있으면 이 객체(object)를 indexing해서 쓰면 요긴함
 

 

> iris_k_means
K-means clustering with 3 clusters of sizes 50, 52, 48

Cluster means:
  Petal.Length Petal.Width
1     1.462000    0.246000
2     4.269231    1.342308
3     5.595833    2.037500

Clustering vector:
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
 [52] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
[103] 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3

Within cluster sum of squares by cluster:
[1]  2.02200 13.05769 16.29167
 (between_SS / total_SS =  94.3 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"    "size"        
[8] "iter"         "ifault"   

 

 

 

 

아래처럼 names() 함수를 써서 군집분석 결과의 객체들에 무엇이 있는지 확인해볼 수도 있습니다.

 

- cluster : 각 개체별 할당된 군집 번호, 1부터 k번까지 군집 숫자 

             (A vector of integers (from 1:k) indicating the cluster to which each point is allocated.)

- centers : 군집의 중심 (centroid) 좌표 행렬 (A matrix of cluster centres.)

- totss : 제곱합의 총합 (total sum of squares)

- withinss : 군집 내 군집과 개체간 거리의 제곱합 벡터.

               (Vector of within-cluster sum of squares, one component per cluster)

- tot.withinss : 군집 내 군집과 개체간 거리의 제곱합의 총합, 즉, sum(withinss)

                   (Total within-cluster sum of squares, i.e. sum(withinss))

- betweenss : 군집과 군집 간 중심의 거리 제곱합

                   (The between-cluster sum of squares, i.e. totss-tot.withinss)

- size : 각 군집의 개체의 개수 (The number of points in each cluster)

- iter : 반복 회수 (The number of (outer) iterations)

- ifault : 전문가용의 발생 가능한 알고리즘 문제의 indocator (?? 이거 뭔지 잘 모르겠음... -_-??)
           (integer: indicator of a possible algorithm problem – for experts)

 

> # objects of k-means clustering in R
> names(iris_k_means)
[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"    "size"        
[8] "iter"         "ifault"

 

 

 

 

그럼, 군집의 크기(객체의 개수)를 한번 확인해볼까요?  table() 함수를 써도 되고 size 객체를 가져다가 확인해도 됩니다. 두 가지 방법 모두 아래에 소개하였습니다.

 

> # cluster size > table(iris_k_means$cluster) 1 2 3 50 52 48


>
iris_k_means$size [1] 50 52 48 > > prop.table(iris_k_means$size) [1] 0.3333333 0.3466667 0.3200000

 

 

 

 

각 군집 1, 2, 3의 중심(centroid)도 확인해보겠습니다.

 

> # centroid of clusters
> iris_k_means$centers
  Petal.Length Petal.Width
1     1.462000    0.246000
2     4.269231    1.342308
3     5.595833    2.037500 

 

 

 

마지막으로, 각 개체들을 군집별로 색깔을 달리해서 산점도(scatter plot) 그려보겠습니다.  덤으로 각 군집의 중심(centroid)을 검정색 점으로 해서 덮입혀보았습니다.

 

위의 [plot 1 : original scatter plot]에서 iris species 로 색깔을 구분해서 그린 산점도와 아래의 군집(cluster)별로 색깔을 구분해서 그린 산점도가 거의 유사하지요?

 

> # Scatter plot of Iris' K-menas clusters
> cluster <- iris_k_means$cluster
> iris_k_means_x_y <- cbind(cluster, iris[,c("Petal.Length", "Petal.Width")])
> head(iris_k_means_x_y)
  cluster Petal.Length Petal.Width
1       1          1.4         0.2
2       1          1.4         0.2
3       1          1.3         0.2
4       1          1.5         0.2
5       1          1.4         0.2
6       1          1.7         0.4
> 
> sapply(iris_k_means_x_y, class)
     cluster Petal.Length  Petal.Width 
   "integer"    "numeric"    "numeric" 
> iris_k_means_x_y <- transform(iris_k_means_x_y, 
+                               cluster = as.factor(cluster))
> 
> sapply(iris_k_means_x_y, class)
     cluster Petal.Length  Petal.Width 
    "factor"    "numeric"    "numeric" 
> 
> 
> library(ggplot2)
> iris_k_means_x_y_plot <- ggplot(data=iris_k_means_x_y, 
+                                 aes(x=Petal.Length, y=Petal.Width, colour=cluster)) + 
+   geom_point(shape=19, size=4) + 
+   ggtitle("Scatter Plot of Iris' K-means clusters")
> 
> iris_k_means_x_y_plot
> 
> 
> # adding centroid points of cluster 1, 2, 3
>   # centers(centroids) by cluster 1, 2, 3
> iris_k_means_centers <- iris_k_means$centers
> iris_k_means_centers
  Petal.Length Petal.Width
1     1.462000    0.246000
2     4.269231    1.342308
3     5.595833    2.037500
> 
> iris_k_means_x_y_plot_2 <- iris_k_means_x_y_plot +
+   annotate("point", x = 1.462, y = 0.246, size = 6, color = "black") + 
+   annotate("point", x = 5.595, y = 2.037, size = 6, color = "black") + 
+   annotate("point", x = 4.269, y = 1.342, size = 6, color = "black") + 
+   
+   annotate("text", x=1.462, y=0.4, label="Cluster 1", size=5) + 
+   annotate("text", x=5.595, y=2.2, label="Cluster 2", size=5) + 
+   annotate("text", x=4.269, y=1.5, label="Cluster 3", size=5)
>  
> iris_k_means_x_y_plot_2

 

 

 

 

 

이상으로 K-중심 군집의 하나인 K-평균군집(K-means Clustering)에 대해서 알아보았습니다.

 

다음번 포스팅에서는 프로토타입 기반(Prototype-based) 군집분석의 두번째 기법으로 퍼지 군지(Fuzzy Clustering)에 대해서 알아보겠습니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감~♡'를 꾸욱 눌러주세요.

 

 

[Reference]

(1) "Introduction to Data Mining", Pang-Ning Tan(Michigan State University), Michael Steinbach(University of Minnesota), Vipin Kumar(University of Minnesota), Addison-Wesley Companion Book

(2) "Clustering Algorithm", Ana Fred, INSTITUTO SUPERIOR TECNICO, Universidade Techica de Lisboa, 2009

(3) "R, SAS, MS-SQL을 활용한 데이터마이닝", 이정진 지음, 자유아카데미, 2011

(4) "Data Mining Cluster Analysis : Basic Concepts and Algorithms", Tan, Steinbach, Kumar, 2004

(5) Wikipedia :

    https://en.wikipedia.org/wiki/K-means_clustering

    https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

   

 

Posted by R Friend R_Friend