지난번 포스팅에서는 numpy와 pandas를 이용해서 차수 m인 단순 이동평균 구하는 방법 (https://rfriend.tistory.com/502) 를 소개하였습니다. 


이번 포스팅에서는 Python pandas에서 시계열 데이터를 생성할 때 유용하게 사용할 수 있는 빈도와 날짜 Offsets (pandas Frequencies and Date Offsets)에 대해서 알아보겠습니다.  2020년 달력을 가지고 Offset Type 별로 Alias 사용해가면서 결과값 확인해보도록 하겠습니다. 



[ Python pandas Base Time Series Frequencies and Date Offsets ]




(* 'Frequency'를 '빈도'라고 번역하는게 좋을지, 아니면 '주기'라고 번역하는게 좋을지 고민스럽습니다. 저는 의미상으로는 '주기'라고 번역하는게 더 적합할 것 같다고 생각하는데요, 이미 '빈도'라고 번역이 되어서 사용되고 있네요. Offset은 뭐라고 번역하는게 좋을지 잘 모르겠네요.)



  (1) 3일 주기의 날짜 데이터 생성하기 (generate dates with 3 days frequency)


pandas 의 Frequencies는 'base frequency'와 'multiplier'로 구성되어 있으며, base frequency는 Alias 문자열(alias string)를 사용하여 호출해서 이용합니다. 아래의 예는 'Day'의 Alias인 'd'(or 'D')에 '3'을 곱하여(multiplier) '3 Days' Frequency (빈도, 주기)의 날짜 범위를 8개 (periods = 8) 생성한 것입니다. 



import pandas as pd


pd.date_range('2019-12-01', periods = 8, freq = '3d') # or freq = '3D'

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-04', '2019-12-07', '2019-12-10', '2019-12-13', '2019-12-16', '2019-12-19', '2019-12-22'], dtype='datetime64[ns]', freq='3D')

 



freq = 3 * '1D' 과 같이 명시적으로 곱하기 3을 밖으로 빼어서 표기해도 freq = '3D'와 결과 값은 동일합니다.  



pd.date_range('2019-12-01', periods = 8, freq = 3 * '1d') # or freq = 3 * '1D'

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-04', '2019-12-07', '2019-12-10',
               '2019-12-13', '2019-12-16', '2019-12-19', '2019-12-22'],
              dtype='datetime64[ns]', freq='3D')

 



그리고 base frequency는 'date offset' 이라는 클래스 객체(class object)를 가지고 있습니다. 아래에 pandas.tseries.offsets 으로부터 일(Day), 시간(Hour), 분(Minute), 초(Minute) date offsets을 불어와서, freq = Day(3)과 같이 Day(3)의 date offset으로 위의 freq = '3d'와 동일한 결과를 얻었습니다.  



from pandas.tseries.offsets import Day, Hour, Minute, Second


pd.date_range('2019-12-01', periods = 8, freq = Day(3))

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-04', '2019-12-07', '2019-12-10',
               '2019-12-13', '2019-12-16', '2019-12-19', '2019-12-22'],
              dtype='datetime64[ns]', freq='3D')




2일(2 Days) + 23시간 (23 Hours) + 59분 (59 Minutes) + 60초 (60 Seconds) = 3 일 (Days)  이므로 아래의 myfreq = Day(2) + Hour(23) + Minute(59) + Second(60) 으로 freq = myfreq 를 사용하여 날짜를 생성하면 위와 동일한 결과를 반환합니다. (3일 주기의 8개 날짜 생성)



from pandas.tseries.offsets import Day, Hour, Minute, Second


myfreq = Day(2) + Hour(23) + Minute(59) + Second(60) # 3 days

myfreq

[Out]: <3 * Days>


pd.date_range('2019-12-01', periods = 8, freq = myfreq)

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-04', '2019-12-07', '2019-12-10',
               '2019-12-13', '2019-12-16', '2019-12-19', '2019-12-22'],
              dtype='datetime64[ns]', freq='3D')

 



물론, freq = '2D23H59min60S' (혹은 freq = '2d23h59T60s') 로 Frequency 의 Alias를 사용해도 결과는 동일합니다. 



pd.date_range('2019-12-01', periods = 8, freq = '2D23H59min60S') # or freq = '2d23h59T60s'

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-04', '2019-12-07', '2019-12-10',
               '2019-12-13', '2019-12-16', '2019-12-19', '2019-12-22'],
              dtype='datetime64[ns]', freq='3D')





각 주/월/분기별 (a) 시작 날짜와 마지막 날짜, (b) 공휴일이 아닌(business day) 시작 날짜와 마지막 날짜를 가져올 수 있는 Data Offset, Alias를 살펴보기 위해 아래의 2020년 달력을 봐가면서 예를 들어보겠습니다.  






  (2) Month End vs. Business Month End, Month Begin vs. Business Month Begin


(2-1) (a) 월의 마지막 날짜(Month End) vs. (b) 월의 공휴일이 아닌 마지막 날짜 (Business Month End)


아래는 (a) 2020년 1월 ~ 8월의 각 월별 마지막 날짜 (offset type: MonthEnd, alias: 'M')와, (b) 각 월별 공휴일이 아닌 마지막 날짜(offset type: Business Month End, alias: 'BM')로 DatetimeIndex 를 생성해보았습니다. 2020년 2월달과 5월달의 'Month End'와 'Business Month End'가 서로 다르게 정확하게 생성되었다는 것을 위의 2020년 달력과 아래의 날짜 생성결과로 확인할 수 있습니다. 



# (a) Month End: 'M'

pd.date_range('2020-01-01', periods = 8, freq = 'M')

[Out]:
DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
               '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31'],
              dtype='datetime64[ns]', freq='M')

 



# (b) Business Month End: 'BM'

pd.date_range('2020-01-01', periods = 8, freq = 'BM')

[Out]:
DatetimeIndex(['2020-01-31', '2020-02-28', '2020-03-31', '2020-04-30',
               '2020-05-29', '2020-06-30', '2020-07-31', '2020-08-31'],
              dtype='datetime64[ns]', freq='BM')





(2-2) (a) 월별 시작 날짜(Month Begin) vs. (b) 월별 공휴일이 아닌 시작 날짜(Business Month Begin)


아래는 (a) 2020년 1월 ~ 8월까지 각 월별 시작 날짜(offset type: MonthStart, alias: 'MS') 와, (b) 공휴일이 아닌 시작 날짜(offset type: BusinessMonthBegin, alias:'BMS') 로 DatetimeIndex 를 생성하였습니다. 



# (a) Month Start: 'MS'

pd.date_range('2020-01-01', periods = 8, freq = 'MS')

[Out]:
DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01',
               '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-01'],
              dtype='datetime64[ns]', freq='MS')




# (b) Business Month Start: 'BMS'

pd.date_range('2020-01-01', periods = 8, freq = 'BMS')

[Out]:
DatetimeIndex(['2020-01-01', '2020-02-03', '2020-03-02', '2020-04-01',
               '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-03'],
              dtype='datetime64[ns]', freq='BMS')

 




  (3) 주별 특정 요일 날짜 (Week)


아래의 예는 2020년 1월 1일 이후의 날 중에서 매주 월요일(freq = 'W-MON'에 해당하는 날짜 8개로 DatetimeIndex를 생성한 것입니다. 각 요일별 alias는 영문 요일의 앞에서부터 3번째 자리까지의 알파벳입니다. 



# -- Week 'Alias': Offset Type

# 'W-MON': Monday

# 'W-TUE': Tuesday

# 'W-WED': Wednesday

# 'W-THU': Thursday

# 'W-FRI': Friday

# 'W-SAT': Saturday

# 'W-SUN': Sunday

pd.date_range('2020-01-01', periods = 8, freq = 'W-MON')

[Out]:

DatetimeIndex(['2020-01-06', '2020-01-13', '2020-01-20', '2020-01-27', '2020-02-03', '2020-02-10', '2020-02-17', '2020-02-24'], dtype='datetime64[ns]', freq='W-MON')

 




  (4) 월별 특정 순번째의 요일 날짜 (Week of Month)


아래의 예는 2020년 1월 1일 이후의 날 중에서 매월 첫번째 금요일(freq = 'WOM-1FRI')에 해당하는 날째 8개로 DatetimeIndex를 생성한 것입니다.  만약 이러한 요건에 해당하는 offset type이 없어서 매뉴얼하게 코딩을 해야 한다고 생각하면 골치가 좀 아플것 같은데요, 매우 편리한 기능입니다. 

(가령, 매월 2번째 화요일로 날짜를 생성하고 싶다면 freq = "WOM-2TUE" 로 해주면 됩니다)



pd.date_range('2020-01-01', periods = 8, freq = 'WOM-1FRI')

[Out]:

DatetimeIndex(['2020-01-03', '2020-02-07', '2020-03-06', '2020-04-03', '2020-05-01', '2020-06-05', '2020-07-03', '2020-08-07'], dtype='datetime64[ns]', freq='WOM-1FRI')





  (5-1) 분기별 마지막 날짜(Quarter End), 분기별 공휴일 아닌 마지막 날짜(Business Quarter End) 


아래의 예는 2020년 1월 1일 이후 날짜 중에서 2월 달을 분기 마지막인 달 기준으로 해서 매 분기별 마지막 날짜(freq = 'Q-FEB') 8개(periods=8)를 가져와서 DatetimeIndex를 생성한 예입니다. 


만약 3월 달(March) 혹은 12월 달(December)을 분기 말의 기준으로 해서 매 분기별 마지막 날짜(freq = 'Q-MAR')를 8개 성성하고 싶다면 아래의 두번째 예제를 참고하면 됩니다. 



# quarterly dates anchored on 'February' last calendar day of each month

pd.date_range('2020-01-01', periods = 8, freq = 'Q-FEB')

[Out]:
DatetimeIndex(['2020-02-29', '2020-05-31', '2020-08-31', '2020-11-30',
               '2021-02-28', '2021-05-31', '2021-08-31', '2021-11-30'],
              dtype='datetime64[ns]', freq='Q-FEB')

 

# quarterly dates anchored on 'March' last calendar day of each month

pd.date_range('2020-01-01', periods = 8, freq = 'Q-MAR')

[Out]:
DatetimeIndex(['2020-03-31', '2020-06-30', '2020-09-30', '2020-12-31',
               '2021-03-31', '2021-06-30', '2021-09-30', '2021-12-31'],
              dtype='datetime64[ns]', freq='Q-MAR')




공휴일이 아닌 Business day 기준의 분기별 마지막 날짜(Business Quarter End)를 2월 달을 분기 마지막인 달 기준으로 8개 생성하려면 아래의 예처럼 freq = 'BQ-FEB' 의 base time series frequency를 사용하면 됩니다. 



# quarterly dates anchored on last busines day of each month

pd.date_range('2020-01-01', periods = 8, freq = 'BQ-FEB')

[Out]:
DatetimeIndex(['2020-02-28', '2020-05-29', '2020-08-31', '2020-11-30',
               '2021-02-26', '2021-05-31', '2021-08-31', '2021-11-30'],
              dtype='datetime64[ns]', freq='BQ-FEB')

 




  (5-2) 분기별 시작 날짜(Quarter Begin), 분기별 공휴일 아닌 시작 날짜(Business Quarter Begin)


분기별 시작 날짜는 위의 (5-1) 번의 offset type alias 'Q'에 'S'를 붙여주어서 'QS', 'BQS' 를 사용합니다. 


아래의 예는 2020년 1월 1일 이후의 날짜 중에서 2월(February) 달을 분기 마지막 달 기준으로 해서 각 분기별 시작 날짜(freq = 'QS-FEB')를 8개 (periods=8) 생성한 것입니다. 



# quarterly dates anchored on first calendar day of each month

pd.date_range('2020-01-01', periods = 8, freq = 'QS-FEB')

[Out]:

DatetimeIndex(['2020-02-01', '2020-05-01', '2020-08-01', '2020-11-01', '2021-02-01', '2021-05-01', '2021-08-01', '2021-11-01'], dtype='datetime64[ns]', freq='QS-FEB')




아래의 예는 분기별 공휴일이 아닌, 즉 business day 기준으로 2월(February) 달을 분기 마지막 달 기준으로 해서 각 분기별 시작 날짜(freq = 'BQS-FEB')를 8개 DatetimeIndex로 생성한 것입니다. 



# quarterly dates anchored on first busines day of each month

pd.date_range('2020-01-01', periods = 8, freq = 'BQS-FEB')

[Out]:
DatetimeIndex(['2020-02-03', '2020-05-01', '2020-08-03', '2020-11-02',
               '2021-02-01', '2021-05-03', '2021-08-02', '2021-11-01'],
              dtype='datetime64[ns]', freq='BQS-FEB')

 




  (6) 년별 특정월 마지막 날짜(Year End), 년별 공휴일이 아닌 특정월 마지막 날짜(Business Year End)


아래의 예는 년도별로 2월(February) 마지막 날짜 (freq = 'A-FEB')를 8개 가져와서 DatetimeIndex를 만든 것입니다. (만약 매년 1월 마지막 날짜를 생성하고 싶으면 freq = 'A-JAN' 처럼 JANUARY의 앞 3개 알파벳을 입력해주면 됩니다)



# Year End

# Annual dates anchored on last calendar day of given month

pd.date_range('2020-01-01', periods = 8, freq = 'A-FEB')

[Out]:

DatetimeIndex(['2020-02-29', '2021-02-28', '2022-02-28', '2023-02-28', '2024-02-29', '2025-02-28', '2026-02-28', '2027-02-28'], dtype='datetime64[ns]', freq='A-FEB')




아래의 예는 매 년도별로 공휴일이 아닌(Business day) 2월(February) 마지막 날짜(freq = 'BA-FEB') 를 8개 (periods=8) 가져와서 DatetimeIndex를 만는 것입니다. 



# Business Year End

# Annual dates anchored on last business day of given month

pd.date_range('2020-01-01', periods = 8, freq = 'BA-FEB')

[Out]:
DatetimeIndex(['2020-02-28', '2021-02-26', '2022-02-28', '2023-02-28',
               '2024-02-29', '2025-02-28', '2026-02-27', '2027-02-26'],
              dtype='datetime64[ns]', freq='BA-FEB')





  (7) 년별 시작 날짜(Year Begin), 년별 공휴일이 아닌 시작 날짜(Business Year Begin)


아래의 예는 2020-01-01일 이후 날짜 중에서 매년 2월(February)의 시작 날짜 (freq = 'AS-FEb') 를 8개(periods=8) 가져와서 DatetimeIndex를 만든 것입니다. 위의 (6)번에 'A'에 'S'를 추가하였습니다. 



# Year Begin

pd.date_range('2020-01-01', periods = 8, freq = 'AS-FEB')

[Out]:
DatetimeIndex(['2020-02-01', '2021-02-01', '2022-02-01', '2023-02-01',
               '2024-02-01', '2025-02-01', '2026-02-01', '2027-02-01'],
              dtype='datetime64[ns]', freq='AS-FEB')




아래의 예는 2020-01-01일 이후이고 공휴일이 아닌(business day) 날짜 중에서 매년 2월(February)의 시작 날짜 (freq = 'BAS-FEB') 를 8개 (periods=8) 가져와서 DatetimeIndex를 만든 것입니다. 바로 위의 freq = 'AS-FEB'에서 'B'를 추가하여 freq = 'BAS-FEB'를 사용해서 만들었습니다. 



# Business Year Begin

pd.date_range('2020-01-01', periods = 8, freq = 'BAS-FEB')

[Out]:
DatetimeIndex(['2020-02-03', '2021-02-01', '2022-02-01', '2023-02-01',
               '2024-02-01', '2025-02-03', '2026-02-02', '2027-02-01'],
              dtype='datetime64[ns]', freq='BAS-FEB')




  (8) Offset 만큼 날짜 이동하기 (shifting dates with offsets)


위에서 Base time series frequencies와 offset types 에 대해서 알아보았습니다. 이 offset 객체를 가지고 다른 datetime 객체에 더하거나 뺄 수 있습니다. 



from datetime import datetime

from pandas.tseries.offsets import MonthEnd, MonthBegin


now = datetime.now()

now

[Out]: datetime.datetime(2019, 12, 21, 15, 30, 39, 654904)



now + MonthEnd()

[Out]: Timestamp('2019-12-31 15:30:39.654904')


now - MonthEnd()

[Out]: Timestamp('2019-11-30 15:30:39.654904')


now + MonthBegin()

[Out]: Timestamp('2020-01-01 15:30:39.654904')



혹은 offset 객체에  rollforward() 메소드를 사용해서 앞으로(미래로) 날짜를 굴리거나(이동시키거나), 아니면 rollback() 메소드를 사용해서 뒤로(과거로) 날짜를 굴릴(이동시킬) 수 있습니다. 재미있는 기능입니다. ^^



offset_me = MonthEnd()


offset_me.rollforward(now)

[Out]: Timestamp('2019-12-31 15:30:39.654904')



offset_me.rollback(now)

[Out]: Timestamp('2019-11-30 15:30:39.654904')

 




  (9) pandas.period_range() 로 날짜 기간(period of time) 만들기


(a) pd.data_range('2020-01-01', periods=10, freq='d')로 만든 DatetimeIndex를 index로 해서 pandas Series를 만들 수도 있으며, (b) pd.period_range('2020-01-01', '2020-01-10', freq='d')러 PeriodIndex 를 만들어서 이를 index로 해서 pandas Series를 만들어도 동일한 결과를 얻을 수 있습니다. 



import pandas as pd

import numpy as np


# (a) pandas.date_range('start_date', periods, freq)

dr = pd.date_range('2020-01-01', periods=10, freq='d')

dr

[Out]:
DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
               '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
               '2020-01-09', '2020-01-10'],
              dtype='datetime64[ns]', freq='D')



pd.Series(range(10), index=dr)

[Out]:
2020-01-01    0
2020-01-02    1
2020-01-03    2
2020-01-04    3
2020-01-05    4
2020-01-06    5
2020-01-07    6
2020-01-08    7
2020-01-09    8
2020-01-10    9
Freq: D, dtype: int64





# (b) pandas.period_range('start_date', 'end_date', freq)

pr = pd.period_range('2020-01-01', '2020-01-10', freq='d')

pr

[Out]:
PeriodIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
             '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
             '2020-01-09', '2020-01-10'],
            dtype='period[D]', freq='D')



pd.Series(range(10), index=pr)

[Out]:
2020-01-01    0
2020-01-02    1
2020-01-03    2
2020-01-04    3
2020-01-05    4
2020-01-06    5
2020-01-07    6
2020-01-08    7
2020-01-09    8
2020-01-10    9
Freq: D, dtype: int64





많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 눌러주세요. :-)




728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 


(1) Yahoo Finace에서 'Apple' 회사의 2019년도 주가 데이터를 가져오기

(2) 주식 종가로 5일, 10일, 20일 단순이동평균(Simple Moving Average) 구하기

(3) 종가, 5일/10일/20일 이동평균을 seaborn을 이용해서 시각화하기


를 차례대로 해보겠습니다. 



  (1) Yahoo Finace에서 'Apple' 회사의 2019년도 주가 데이터를 가져오기


Yahoo Finance 사이트에서 쉽게 주가 데이터를 다운로드 받는 방법 중의 하나는 yfinance library를 설치해서 download() 함수를 이용하는 것입니다. Jupyter Notebook의 Cell에서 바로 !pip install yfinance 명령어로 라이브러리를 설치하고 import 해서 download() 함수로 Apple('AAPL')의 2019-01-01 ~ 2019-12-24' 일까지의 주가 데이터를 다운로드하였습니다. 



# Install yfinance package.

!pip install yfinance

 

# Import yfinance

import yfinance as yf  

 

# Get the data for the stock Apple by specifying the stock ticker, start date, and end date

aapl = yf.download('AAPL','2019-01-01','2019-12-25')


Requirement already satisfied: yfinance in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (0.1.52)
Requirement already satisfied: multitasking>=0.0.7 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from yfinance) (0.0.9)
Requirement already satisfied: numpy>=1.15 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from yfinance) (1.17.3)
Requirement already satisfied: pandas>=0.24 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from yfinance) (0.25.3)
Requirement already satisfied: requests>=2.20 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from yfinance) (2.22.0)
Requirement already satisfied: pytz>=2017.2 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from pandas>=0.24->yfinance) (2019.3)
Requirement already satisfied: python-dateutil>=2.6.1 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from pandas>=0.24->yfinance) (2.8.1)
Requirement already satisfied: certifi>=2017.4.17 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from requests>=2.20->yfinance) (2019.11.28)
Requirement already satisfied: idna<2.9,>=2.5 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from requests>=2.20->yfinance) (2.8)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from requests>=2.20->yfinance) (1.25.7)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from requests>=2.20->yfinance) (3.0.4)
Requirement already satisfied: six>=1.5 in /Users/ihongdon/anaconda3/envs/py3.6_tf2.0/lib/python3.6/site-packages (from python-dateutil>=2.6.1->pandas>=0.24->yfinance) (1.13.0)
[*********************100%***********************]  1 of 1 completed


aapl.head()

[Out]:

OpenHighLowCloseAdj CloseVolume
Date
2018-12-31158.529999159.360001156.479996157.740005155.40504535003500
2019-01-02154.889999158.850006154.229996157.919998155.58236737039700
2019-01-03143.979996145.720001142.000000142.190002140.08522091312200
2019-01-04144.529999148.550003143.800003148.259995146.06535358607100
2019-01-07148.699997148.830002145.899994147.929993145.74026554777800





  (2) 주식 종가(Close)로 5일, 10일, 20일 이동평균 구하기


Apple 회사의 주식 데이터 중에서 '종가(Close)'를 대상으로 이동평균을 구해보겠습니다. 



aapl.Close[:10]

[Out]:
Date
2018-12-31    157.740005
2019-01-02    157.919998
2019-01-03    142.190002
2019-01-04    148.259995
2019-01-07    147.929993
2019-01-08    150.750000
2019-01-09    153.309998
2019-01-10    153.800003
2019-01-11    152.289993
2019-01-14    150.000000
Name: Close, dtype: float64

 




이동평균은 시계열 데이터 내의 잡음(noise)을 제거하는 데이터 전처리, 혹은 계절성이 존재하는 시계열 데이터에서 계절성 부분을 빼고 장기 추세 요인(trend factor)나 중기 순환/주기 요인(cycle factor)를 보려고 할 때 많이 사용합니다. 시계열 데이터 예측(forecasting)에도 사용하구요. 


이동평균은 가중치를 고려 안하는 (즉, 모든 값의 가중치가 같다고 가정하는) 단순이동평균(Simple Moving Average, SMA)과, 가중치를 부여하는 가중이동평균(Weighted Moving Average, WMA)가 있는데요, 이번 포스팅에서는 단순이동평균(SMA)에 대해서 다룹니다. 


차수(order) m 인 단순이동평균(Simple Moving Average with Order m) 은 다시 중심이동평균(Centered Moving Average)추적이동평균(Trailing Moving Average)로 구분할 수 있습니다 (아래의 개념 비교 이미지를 참고하세요). 이번 포스팅에서는 python pandas에서 사용하고 있는 추적이동평균 개념으로 window 5일, 10일, 15일의 단순이동평균을 계산해 보았습니다. 






이동평균을 구하는 두 가지 방법으로, for loop 반복문과 numpy.mean() 을 이용하는 수작업 방법과, pandas 라이브러리의 rolling(window=m).mean() 함수를 이용하는 좀더 편리한 방법을 소개하겠습니다. 



(2-1) for loop 반복문과 numpy.mean() 을 이용한 5일 이동평균 구하기



import numpy as np


for i in range(0, 6):

    stock_close_5days = aapl.Close[i:(i+5)]

    sma_5d = np.mean(stock_close_5days)

    print('SMA(5 Days Window) of', aapl.Close.index[i+4].date(), ':', sma_5d)


[Out]:

SMA(5 Days Window) of 2019-01-07 : 150.80799865722656 SMA(5 Days Window) of 2019-01-08 : 149.40999755859374 SMA(5 Days Window) of 2019-01-09 : 148.48799743652344 SMA(5 Days Window) of 2019-01-10 : 150.80999755859375 SMA(5 Days Window) of 2019-01-11 : 151.61599731445312 SMA(5 Days Window) of 2019-01-14 : 152.02999877929688

 




(2-2) pandas 의 rolling(window=5).mean() 함수를 이용한 5일 이동평균 구하기


차수 m인 이동평균(trailing moving average)을 구하면 처음 시작부분에 m-1 개의 결측값이 발생합니다.



import pandas as pd


sma_5d = aapl.Close.rolling(window=5).mean()

sma_5d[:10]


[Out]:

Date 2018-12-31 NaN 2019-01-02 NaN 2019-01-03 NaN 2019-01-04 NaN 2019-01-07 150.807999 2019-01-08 149.409998 2019-01-09 148.487997 2019-01-10 150.809998 2019-01-11 151.615997 2019-01-14 152.029999 Name: Close, dtype: float64

 



이제 pandas에서 이동평균 구하는 rolling() 함수를 알았으니, 차수(order, window)가 5일, 10일, 20일인 단순 추적 이동평균(simple trailing moving average)을 구해보겠습니다. 



# simple trailing moving average with window 5 days/ 10 days/ 20 days

df_sma = pd.DataFrame({

    'close': aapl.Close

    , 'sma_5d': aapl.Close.rolling(window=5).mean()

    , 'sma_10d': aapl.Close.rolling(window=10).mean()

    , 'sma_20d': aapl.Close.rolling(window=20).mean()

})

 

# top first 25 rows

df_sma[:25]

[Out]:

closesma_5dsma_10dsma_20d
Date
2018-12-31157.740005NaNNaNNaN
2019-01-02157.919998NaNNaNNaN
2019-01-03142.190002NaNNaNNaN
2019-01-04148.259995NaNNaNNaN
2019-01-07147.929993150.807999NaNNaN
2019-01-08150.750000149.409998NaNNaN
2019-01-09153.309998148.487997NaNNaN
2019-01-10153.800003150.809998NaNNaN
2019-01-11152.289993151.615997NaNNaN
2019-01-14150.000000152.029999151.418999NaN
2019-01-15153.070007152.494000150.951999NaN
2019-01-16154.940002152.820001150.653999NaN
2019-01-17155.860001153.232001152.020999NaN
2019-01-18156.820007154.138004152.877000NaN
2019-01-22153.300003154.798004153.414001NaN
2019-01-23153.919998154.968002153.731001NaN
2019-01-24152.699997154.520001153.670001NaN
2019-01-25157.759995154.900000154.066000NaN
2019-01-28156.300003154.795999154.467001NaN
2019-01-29154.679993155.071997154.935001153.177000
2019-01-30165.250000157.337997156.153000153.552499
2019-01-31166.440002160.085999157.303000153.978500
2019-02-01166.520004161.838000158.369000155.195000
2019-02-04171.250000164.828000159.812000156.344500
2019-02-05174.179993168.728000161.899998157.657000





  (3) 종가, 5일/10일/15일 이동평균을 seaborn을 이용해서 시각화하기


trailing moving average 이동평균을 구하면 차수 m-1 만큼의 결측값(NaN) 이 생깁니다. 시각화를 위해서 결측값이 있는 행은 삭제하도록 하겠습니다. 



df_sma.dropna(axis=0, inplace=True)

df_sma.head(10)

[Out]:

closesma_5dsma_10dsma_20d
Date
2019-01-29154.679993155.071997154.935001153.177000
2019-01-30165.250000157.337997156.153000153.552499
2019-01-31166.440002160.085999157.303000153.978500
2019-02-01166.520004161.838000158.369000155.195000
2019-02-04171.250000164.828000159.812000156.344500
2019-02-05174.179993168.728000161.899998157.657000
2019-02-06174.240005170.526001163.931999158.831500
2019-02-07170.940002171.426001165.756000159.713000
2019-02-08170.410004172.204001167.021001160.543501
2019-02-11169.429993171.839999168.334000161.400500

 



Matplotlib 을 이용해서 '종가(Close)', '5일 이동평균', '10일 이동평균', '20일 이동평균' 선 그래프를 그려보겠습니다. 



# line plot with moving average of 5 window, 10 window, 20 window

import matplotlib.pyplot as plt

plt.figure(figsize=(15, 10))

plt.plot(df_sma.index, df_sma.close, 'y-', label='close_price')

plt.plot(df_sma.index, df_sma.sma_5d, 'b-', label='sma_5d')

plt.plot(df_sma.index, df_sma.sma_10d, 'r-', label='sma_10d')

plt.plot(df_sma.index, df_sma.sma_20d, 'g-', label='sma_20d')

plt.legend()

plt.show()





위의 1년치 시계열 그래프가 서로 겹쳐보여서 잘 구분이 안되네요. 그래서 2월달의 20개 관측치만 선택해서 다시 시계열 선 그래프를 그려보겠습니다. 


아래의 그래프에서 확인할 수 있는 바와 같이, 이동평균 값은 원래의 주식 종가(Close) 값보다 후행적으로 쫓아가고(trailing) 있습니다. 그리고 차수(order, rolling window)가 클 수록 후행적으로 쫒아가는 정도가 더 느림을 알 수 있습니다. 



plt.figure(figsize=(15, 10))

plt.plot(df_sma.index[:20], df_sma.close[:20], 'yo-', label='close_price')

plt.plot(df_sma.index[:20], df_sma.sma_5d[:20], 'bo-', label='sma_5d')

plt.plot(df_sma.index[:20], df_sma.sma_10d[:20], 'ro-', label='sma_10d')

plt.plot(df_sma.index[:20], df_sma.sma_20d[:20], 'go-', label='sma_20d')

plt.legend()

plt.show()



 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

지난번 포스팅에서는 Python pandas의 Series, DataFrame에서 시계열 데이터 index 의 중복 확인 및 처리하는 방법(https://rfriend.tistory.com/500) 에 대해서 소개하였습니다. 


이번 포스팅에서는 Python pandas에서 일정한 주기의 시계열 데이터(Fixed frequency time series)를 가진 Series, DataFrame 만드는 방법을 소개하겠습니다. 



[ 시계열 데이터의 특징 ]

  • 동일한/ 고정된 간격의 날짜-시간 index (equally spaced time interval, fixed frequency)
  • 중복 없고, 빠진 것도 없는 날짜-시간 index (no redundant values or gaps)
  • 시간 순서대로 정렬 (sequential order)

(* 시계열 데이터가 반드시 동일한/고정된 간격의 날짜-시간을 가져야만 하는 것은 아님. 가령, 주가(stock price) 데이는 장이 열리는 business day에만 존재하며 공휴일은 데이터 없음)





  (1) 동일 간격의 시계열 데이터 Series 만들기 (fixed frequency time series pandas Series)



(1-1) 중간에 날짜가 비어있는 시계열 데이터 Series 만들기 (non-equally spaced time series)


먼저, 예제로 사용할 간단한 시계열 데이터 pandas Series 를 만들어보겠습니다. 의도적으로 '2019-12-04', '2019-12-08' 일의 날짜-시간 index 를 제거(drop)하여 이빨 빠진 날짜-시간 index 를 만들었습니다. 



import pandas as pd


# generate dates from 2019-12-01 to 2019-12-10

date_idx = pd.date_range('2019-12-01', periods=10)

date_idx

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04', '2019-12-05', '2019-12-06', '2019-12-07', '2019-12-08', '2019-12-09', '2019-12-10'], dtype='datetime64[ns]', freq='D')


# drop 2 dates from DatetimeIndex

date_idx = date_idx.drop(pd.DatetimeIndex(['2019-12-04', '2019-12-08']))

date_idx

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-05',
               '2019-12-06', '2019-12-07', '2019-12-09', '2019-12-10'],
              dtype='datetime64[ns]', freq=None)

# Time Series with missing dates index

series_ts_missing = pd.Series(range(len(date_idx))

                              , index=date_idx)


series_ts_missing

[Out]:
2019-12-01    0
2019-12-02    1
2019-12-03    2
2019-12-05    3
2019-12-06    4
2019-12-07    5
2019-12-09    6
2019-12-10    7
dtype: int64





(1-2) 이빨 빠진 Time Series를 동일한 간격의 시계열 데이터 pandas Series로 변환하기 

       (fixed frequency, equally spaced time interval time series)


위의 (1-1)에서 만든 Series는 '2019-12-04', '2019-12-08'일의 날짜-시간 index가 빠져있는데요, 이럴 경우 resample('D')를 이용하여 날짜-시간 index는 등간격의 날짜-시간을 채워넣고, 대신 값은 결측값 처리(missing value, NaN, Not a Number)를 해보겠습니다. 



# Create a 1 day Fixed Frequency Time Series using resample('D')

series_ts_fixed_freq = series_ts_missing.resample('D')

series_ts_fixed_freq.first()

[Out]:
2019-12-01    0.0
2019-12-02    1.0
2019-12-03    2.0
2019-12-04    NaN <---
2019-12-05    3.0
2019-12-06    4.0
2019-12-07    5.0
2019-12-08    NaN <---
2019-12-09    6.0
2019-12-10    7.0
Freq: D, dtype: float64




비어있던 '날짜-시간' index 를 등간격 '날짜-시간' index로 채우면서 값(value)에 'NaN'이 생긴 부분을 fillna(0)을 이용하여 '0'으로 채워보겠습니다. 



# fill missing value with '0'

series_ts_fixed_freq.first().fillna(0)

[Out]:
2019-12-01    0.0
2019-12-02    1.0
2019-12-03    2.0
2019-12-04    0.0 <---
2019-12-05    3.0
2019-12-06    4.0
2019-12-07    5.0
2019-12-08    0.0 <---
2019-12-09    6.0
2019-12-10    7.0
Freq: D, dtype: float64

 




이번에는 resample('10T')를 이용하여 '10분 단위의 동일 간격 날짜-시간' index의 시계열 데이터를 만들어보겠습니다. 이때도 원래의 데이터셋에 없던 '날짜-시간' index의 경우 값(value)은 결측값으로 처리되어 'NaN'으로 채워집니다. 



# resampling with 10 minutes frequency (interval)

series_ts_missing.resample('10T').first()

[Out]:

2019-12-01 00:00:00 0.0 2019-12-01 00:10:00 NaN 2019-12-01 00:20:00 NaN 2019-12-01 00:30:00 NaN 2019-12-01 00:40:00 NaN ... 2019-12-09 23:20:00 NaN 2019-12-09 23:30:00 NaN 2019-12-09 23:40:00 NaN 2019-12-09 23:50:00 NaN 2019-12-10 00:00:00 7.0 Freq: 10T, Length: 1297, dtype: float64

 





  (2) 동일 간격의 시계열 데이터 DataFrame 만들기 

       (fixed frequency time series pandas DataFrame)



(2-1) 중간에 날짜가 비어있는 시계열 데이터 DataFrame 만들기 (non-equally spaced time series DataFrame)


pd.date_range() 함수로 등간격의 10일치 날짜-시간 index를 만든 후에, drop(pd.DatetimeIndex()) 로 '2019-12-04', '2019-12-08'일을 제거하여 '이빨 빠진 날짜-시간' index를 만들었습니다. 



import pandas as pd


# generate dates from 2019-12-01 to 2019-12-10

date_idx = pd.date_range('2019-12-01', periods=10)


# drop 2 dates from DatetimeIndex

date_idx = date_idx.drop(pd.DatetimeIndex(['2019-12-04', '2019-12-08']))

date_idx

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-05',

'2019-12-06', '2019-12-07', '2019-12-09', '2019-12-10'], dtype='datetime64[ns]', freq=None)


df_ts_missing = pd.DataFrame(range(len(date_idx))

                             , columns=['col']

                             , index=date_idx)


df_ts_missing

[Out]:

col
2019-12-010
2019-12-021
2019-12-032
2019-12-053
2019-12-064
2019-12-075
2019-12-096
2019-12-107

 




(2-2) 이빨 빠진 Time Series를 동일한 간격의 시계열 데이터 pandas DataFrame으로 변환하기 

       (fixed frequency, equally spaced time interval time series pandas DataFrame)


resample('D') 를 메소드를 사용하여 '일(Day)' 동일 간격의 '날짜-시간' index를 가지는 시계열 데이터 DataFrame을 만들었습니다. 이때 원래의 데이터에 없던 '날짜-시간' index의 경우 결측값 처리되어 값(value)은 'NaN'으로 처리됩니다. 



df_ts_fixed_freq = df_ts_missing.resample('D').first()

df_ts_fixed_freq

[Out]:

col
2019-12-010.0
2019-12-021.0
2019-12-032.0
2019-12-04NaN <---
2019-12-053.0
2019-12-064.0
2019-12-075.0
2019-12-08NaN <---
2019-12-096.0
2019-12-107.0




동일 간견 시계열 데이터로 변환하는 과정에서 생긴 'NaN' 결측값 부분을 fillina(0) 메소드를 이용하여 '0'으로 대체하여 채워보겠습니다. 



# fill missing value with '0'

df_ts_fixed_freq = df_ts_fixed_freq.fillna(0)

df_ts_fixed_freq

col
2019-12-010.0
2019-12-021.0
2019-12-032.0
2019-12-040.0 <---
2019-12-053.0
2019-12-064.0
2019-12-075.0
2019-12-080.0 <---
2019-12-096.0
2019-12-107.0




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

지난 포스팅에서는 '날짜-시간 index'를 가지는 pandas Series, DataFrame에서 '날짜-시간 index'를 기준으로 시계열 데이터를 indexing, slicing, selection 하는 방법(https://rfriend.tistory.com/499)을 소개하였습니다. 



이번 포스팅에서는 Python pandas 의 Series, DataFrame에서 


(1) 시계열 데이터 index 중복 여부를 확인 (check duplicated time series indices)

(2) 시계열 데이터 중복 index 시 첫번째 행만 가져오기 (keep the first row from duplicated time series indices)

(3) 시계열 데이터 index 별 group by 집계 (group by aggregation using time series indices)


하는 방법을 소개하겠습니다. 





예제로 사용할 간단할 시계열 데이터 pandas Series를 만들어보겠습니다. 


이번 포스팅의 주제가 '중복된 시계열 데이터 인덱스 (Duplicated DatatimeIndex)' 이므로 append() 메소드를 사용하여 '2019-12-01', '2019-12-02' 일의 인덱스를 추가함으로써 중복 인덱스를 만들어보았습니다. 


그리고, 시계열 데이터는 시간 순서대로 정렬된 상태로 저장된 데이터이므로 sort_values() 메소드로 내림차순 정렬(sort in ascending order)을 해주었습니다. 



import pandas as pd


# generate dates from 2019-12-01 to 2019-12-10

date_idx = pd.date_range('2019-12-01', periods=10)

date_idx

[Out]:

DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04', '2019-12-05', '2019-12-06', '2019-12-07', '2019-12-08', '2019-12-09', '2019-12-10'], dtype='datetime64[ns]', freq='D')


# append duplicated dates index

date_idx = date_idx.append(pd.DatetimeIndex(['2019-12-01', '2019-12-02']))

date_idx

[Out]:
DatetimeIndex(['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04',
               '2019-12-05', '2019-12-06', '2019-12-07', '2019-12-08',
               '2019-12-09', '2019-12-10', '2019-12-01', '2019-12-02'],
              dtype='datetime64[ns]', freq=None)



# Time Series with duplicated dates index

series_ts = pd.Series(range(len(date_idx))

                      , index=date_idx.sort_values())


series_ts

[Out]:
2019-12-01     0
2019-12-01     1
2019-12-02     2
2019-12-02     3
2019-12-03     4
2019-12-04     5
2019-12-05     6
2019-12-06     7
2019-12-07     8
2019-12-08     9
2019-12-09    10
2019-12-10    11
dtype: int64


 



  (1) 시계열 데이터 index 중복 여부를 확인 (check duplicated DatetimeIndex indices)


날짜-시간 index 의 중복 여부를 확인하는 방법에는 여러가지가 있는데요, 그중에서 가장 간단한 방법은 유일한 값 여부(is unique?)를 확인할 수 있는 is_unique 메소드를 사용하는 것입니다. '유일한 값'으로만 되어있으면 True, '중복 값'이 포함되어 있으면 False를 반환합니다. 



# duplication check

series_ts.index.is_unique

[Out]: False

 



index 중복 여부를 확인하는 다른 방법으로는 index에 대해 nunique() 메소드를 사용해서 유일한 값의 index 개수를 세어보고, len(series_ts)로 Series의 전체 행의 개수를 세어보아서 이 둘의 값이 같은지를 확인해보는 것입니다. 만약 중복 index가 있다면 이 둘의 개수가 다르겠지요. 



# duplication check

series_ts.index.nunique() == len(series_ts)

[Out]: False

 




행 단위까지 내려가서 확인을 해보고 싶으면 groupby(level=0) 으로 첫번째인 날짜-시간 index 기준으로 Group By 개수 집계를 해봐서 날짜-시간 index별 행 개수가 '1' 초과인 행을 살펴보면 됩니다. 


< 날짜-시간 index별 행의 개수 집계 >


# count group by time series index

series_ts.groupby(level=0).count() # or size()

[Out]:
2019-12-01    2
2019-12-02    2
2019-12-03    1
2019-12-04    1
2019-12-05    1
2019-12-06    1
2019-12-07    1
2019-12-08    1
2019-12-09    1
2019-12-10    1
dtype: int64


< 날짜-시간 index별 행의 개수가 1 보다 큰 경우, 즉 중복 index 인 모든 행 선택 >


# selecting duplicated index rows

series_ts[series_ts.groupby(level=0).count() > 1]

[Out]:

2019-12-01 0 2019-12-01 1 2019-12-02 2 2019-12-02 3 dtype: int64

 





  (2) 시계열 데이터 중복 index 시 첫번째 행만 가져오기 

       (keep the first row from duplicated time series indices)


날짜-시간 index 중복인 경우 첫번째 행을 가져오려면 groupby(level=0).first(), 마지막 행을 가져오려면 groupby(level=0).last() 메소드를 사용합니다. 



# selecting FIRST row in case duplicated index

series_ts.groupby(level=0).first()

[Out]:
2019-12-01     0
2019-12-02     2
2019-12-03     4
2019-12-04     5
2019-12-05     6
2019-12-06     7
2019-12-07     8
2019-12-08     9
2019-12-09    10
2019-12-10    11
dtype: int64

 


# selecting LAST row in case duplicated index

series_ts.groupby(level=0).last()

[Out]:
2019-12-01     1
2019-12-02     3
2019-12-03     4
2019-12-04     5
2019-12-05     6
2019-12-06     7
2019-12-07     8
2019-12-08     9
2019-12-09    10
2019-12-10    11
dtype: int64






  (3) 시계열 데이터 index 별 group by 집계 

      (group by aggregation using time series indices)


groupby(level=0) 으로 날짜-시간 index 기준으로 GroupBy operation을 수행할 수 있으므로, groupby().agg() 로 집계하고자 하는 함수를 agg() 괄호 안에 넣어서 집계할 수 있습니다. 아래 예제에서는 날짜-시간 index별로 행의 개수(size), 합계(sum), 평균(mean), 최소값(min), 최대값(max) 를 구해보았습니다. (중복 index 시 groupby.agg() 함수 적용하여 집계/요약함)


참고로, groupby().agg() 로 여러개의 집계함수를 적용한 경우 DataFrame을 반환합니다. (vs. 한개의 집계함수만 groupby(level=0).size() 처럼 사용한 경우 Series 반환)



# aggregating size, sum, mean, min, max by group by time series index

series_ts.groupby(level=0).agg(['size', 'sum', 'mean', 'min', 'max'])

[Out]:

sizesummeanminmax
2019-12-01210.501
2019-12-02252.523
2019-12-03144.044
2019-12-04155.055
2019-12-05166.066
2019-12-06177.077
2019-12-07188.088
2019-12-08199.099
2019-12-0911010.01010
2019-12-1011111.01111

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

지난번 포스팅에서는 날짜-시간 시계열 객체(date-time, Timeseries objects)를 문자열(Strings)로 변환하기, 거꾸로 문자열을 날짜-시간 시계열 객체로 변환하는 방법(https://rfriend.tistory.com/498)을 소개하였습니다. 


이번 포스팅에서는 날짜-시간 시계열 데이터(date-time time series) index로 가지는  Python pandas의 Series, DataFrame 에서 특정 날짜-시간을 indexing, slicing, selection, truncation 하는 방법을 소개하겠습니다. 


(1) pandas Series에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법

(2) pandas DataFrame에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법





  (1) pandas Series에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법


먼저, 간단한 예제로 사용하도록 2019년 11월 25일 부터 ~ 2019년 12월 4일까지 10일 기간의 년-월-일 날짜를 index로 가지는 pands Series를 만들어보겠습니다. 


pandas.date_range(시작날짜, periods=생성할 날짜-시간 개수)  함수를 사용하여 날짜-시간 데이터를 생성하였으며, 이를 index로 하여 pandas Series를 만들었습니다. 



import pandas as pd

from datetime import datetime


# DatetimeIndex

ts_days_idx = pd.date_range('2019-11-25', periods=10)

ts_days_idx

[Out]:

DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28', '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04'], dtype='datetime64[ns]', freq='D')



# Series with time series index

series_ts = pd.Series(range(len(ts_days_idx))

                      , index=ts_days_idx)


series_ts

[Out]:
2019-11-25    0
2019-11-26    1
2019-11-27    2
2019-11-28    3
2019-11-29    4
2019-11-30    5
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64



series_ts.index

[Out]: 
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')


series_ts.index[6]

[Out]: Timestamp('2019-12-01 00:00:00', freq='D')




참고로, 아례의 예처럼 pd.date_range(start='시작 날짜-시간', end='끝 날짜-시간') 처럼 명시적으로 시작과 끝의 날짜-시간을 지정해주어도 위의 perieds를 사용한 예와 동일한 결과를 얻을 수 있습니다. 



import pandas as pd


pd.date_range(start='2019-11-25', end='2019-12-04')

[Out]:
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')




참고로 하나더 소개하자면요, pandas.date_range('시작날짜-시간', period=생성할 날짜-시간 개수, freq='주기 단위') 에서 freq 옵션을 통해서 'S' 1초 단위, '10S' 10초 단위, 'H' 1시간 단위, 'D' 1일 단위, 'M' 1달 단위(월 말일 기준), 'Y' 1년 단위 (년 말일 기준) 등으로 날짜-시간 시계열 데이터 생성 주기를 설정할 수 있습니다. 매우 편하지요?!


< 1초 단위로 날짜-시간 데이터 10개를 생성한 예 >


# 10 timeseries data points by Second(freq='S')

pd.date_range('2019-11-25 00:00:00', periods=10, freq='S')

[Out]: 
DatetimeIndex(['2019-11-25 00:00:00', '2019-11-25 00:00:01',
               '2019-11-25 00:00:02', '2019-11-25 00:00:03',
               '2019-11-25 00:00:04', '2019-11-25 00:00:05',
               '2019-11-25 00:00:06', '2019-11-25 00:00:07',
               '2019-11-25 00:00:08', '2019-11-25 00:00:09'],
              dtype='datetime64[ns]', freq='S')



< 10초 단위로 날짜-시간 데이터 10개를 생성한 예 >


# 10 timeseries data points by 10 Seconds (freq='10S')

pd.date_range('2019-11-25 00:00:00', periods=10, freq='10S')

[Out]:

DatetimeIndex(['2019-11-25 00:00:00', '2019-11-25 00:00:10', '2019-11-25 00:00:20', '2019-11-25 00:00:30', '2019-11-25 00:00:40', '2019-11-25 00:00:50', '2019-11-25 00:01:00', '2019-11-25 00:01:10', '2019-11-25 00:01:20', '2019-11-25 00:01:30'], dtype='datetime64[ns]', freq='10S')

 



(1-1) 시계열데이터를 index로 가지는 pandas Series에서 특정 날짜-시간 데이터 indexing 하기


먼저 위에서 생성한 series_ts 라는 이름의 시간 순서대로 정렬되어 있는 Series 에서 7번째에 위치한 '2019-12-01' 의 값 '6'을 indexing 해보겠습니다. 


(a), (b)와 같이 위치(position)를 가지고 인덱싱할 수 있습니다. 

또한, (c), (d)와 같이 날짜-시간 문자열(String)을 가지고도 인덱싱(indexing)을 할 수 있습니다. 

(e) 처럼 datetime.datetime(year, month, day) 객체를 사용해서도 인덱싱할 수 있습니다. 



import pandas as pd

from datetime import datetime


# (a) indexing with index number

series_ts[6]

[Out]: 6


# (b) indexing with index number using iloc

series_ts.iloc[6]

[Out]: 6


# (c) indexing with string ['year-month-day']

series_ts['2019-12-01']

[Out]: 6


# (d) indexing with string ['month/day/year']

series_ts['12/01/2019']

[Out]: 6


# (f) indexing with datetime.datetime(year, month, day)

series_ts[datetime(2019, 12, 1)]

[Out]: 6





(1-2) 시계열데이터를 index로 가지는 pandas Series에서 날짜-시간 데이터 Slicing 하기


아래는 '2019-12-01' 일 이후의 값을 모두 slicing 해오는 5가지 방법입니다. 

(a), (b)는 위치(position):위치(position)을 이용하여 날짜를 index로 가지는 Series를 slicing을 하였습니다. 

(c), (d)는 '년-월-일':'년-월-일' 혹은 '월/일/년':'월/일/년' 문자열(string)을 이용하여 slicing을 하였습니다. 

(e)는 datetime.datetime(년, 월, 일):datetime.datetime(년, 월, 일) 을 이용하여 slicing을 하였습니다. 



import pandas as pd

from datetime import datetime


# (a) slicing with position

series_ts[6:]

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64


# (b) slicing with position using iloc

series_ts.iloc[6:]

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (c) slicing with string

series_ts['2019-12-01':'2019-12-10']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (d) slicing with string

series_ts['12/01/2019':'12/10/2019']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

# (e) slicing with datetime

series_ts[datetime(2019, 12, 1):datetime(2019, 12, 10)]

[Out]:

2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64




(1-3) 시계열데이터를 index로 가지는 pandas Series 에서 날짜-시간 데이터 Selection 하기


'날짜-시간' 문자열(String)을 이용하여 특정 '년', '월'의 모든 데이터를 선택할 수도 있습니다. 꽤 편리하고 재미있는 기능입니다. 


< '2019'년 모든 데이터 선택하기 예 >


# selection with year string

series_ts['2019']

[Out]:

2019-11-25 0 2019-11-26 1 2019-11-27 2 2019-11-28 3 2019-11-29 4 2019-11-30 5 2019-12-01 6 2019-12-02 7 2019-12-03 8 2019-12-04 9 Freq: D, dtype: int64

 



< '2019년 12월' 모든 데이터 선택하기 예 >


# selection with year-month string

series_ts['2019-12']

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

 




(1-4) 시계열 데이터를 index로 가지는 pandas Series에서 날짜-시간 데이터 잘라내기 (Truncate)


truncate() methods를 사용하면 잘라내기(truncation)를 할 수 있습니다. before, after 옵션으로 잘라내기하는 범위 기간을 설정할 수 있는데요, 해당 날짜 포함 여부를 유심히 살펴보기 바랍니다. 


< '2019년 12월 1일' 이전(before) 모든 데이터 잘라내기 예 >

('2019년 11월 30일'까지의 모든 데이터 삭제하며, '2019-12-01'일 데이터는 남아 있음)


# truncate before

series_ts.truncate(before='2019-12-01')

[Out]:
2019-12-01    6
2019-12-02    7
2019-12-03    8
2019-12-04    9
Freq: D, dtype: int64

 



< '2019년 11월 30일' 이후(after) 모든 데이터 잘라내기 예 >

(''2019년 12월 1일' 부터의 모든 데이터 삭제하며, '2019-11-30'일 데이터는 남아 있음)


# truncate after

series_ts.truncate(after='2019-11-30')

[Out]:
2019-11-25    0
2019-11-26    1
2019-11-27    2
2019-11-28    3
2019-11-29    4
2019-11-30    5
Freq: D, dtype: int64

 





  (2) pandas DataFrame에서 시계열 데이터 indexing, slicing, selection, truncation 하는 방법


위의 (1)번에서 소개했던 pandas Series의 시계열 데이터 indexing, slicing, selection, truncation 방법을 동일하게 pandas DataFrame에도 사용할 수 있습니다.  


년-월-일 날짜를 index로 가지는 간단한 pandas DataFrame 예제를 만들어보겠습니다. 



import pandas as pd

from datetime import datetime


# DatetimeIndex

ts_days_idx = pd.date_range('2019-11-25', periods=10)

ts_days_idx

[Out]:
DatetimeIndex(['2019-11-25', '2019-11-26', '2019-11-27', '2019-11-28',
               '2019-11-29', '2019-11-30', '2019-12-01', '2019-12-02',
               '2019-12-03', '2019-12-04'],
              dtype='datetime64[ns]', freq='D')


# DataFrame with DatetimeIndex

df_ts = pd.DataFrame(range(len(ts_days_idx))

                     , columns=['col']

                     , index=ts_days_idx)


df_ts

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 




(2-1) 시계열데이터를 index로 가지는 pandas DataFrame에서 특정 날짜-시간 데이터 indexing 하기


위의 (1-1) Series indexing과 거의 유사한데요, DataFrame에서는 df_ts[6], df_ts[datetime(2019, 12, 1)] 의 두가지 방법은 KeyError 가 발생해서 사용할 수 없구요, 아래의 3가지 방법만 indexing에 사용 가능합니다. 


(a) iloc[integer] 메소드를 사용하여 위치(position) 로 indexing 하기

(b), (c) loc['label'] 메소드를 사용하여 이름('label')로 indexing 하기



# (a) indexing with index position integer using iloc[]

df_ts.iloc[6]

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64


# (b) indexing with index labels ['year-month-day']

df_ts.loc['2019-12-01']

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64


# (c) indexing with index labels ['month/day/year']

df_ts.loc['12/01/2019']

[Out]:
col    6
Name: 2019-12-01 00:00:00, dtype: int64





(2-2) 시계열데이터를 index로 가지는 pandas DataFrame에서 날짜-시간 데이터 Slicing 하기


아래는 '2019-12-01' 일 이후의 값을 모두 slicing 해오는 4가지 방법입니다. 

(a) 위치(position):위치(position)을 이용하여 날짜를 index로 가지는 Series를 slicing을 하였습니다. 

(b), (c)는 loc['년-월-일']:loc['년-월-일'] 혹은 loc['월/일/년']:loc['월/일/년'] 문자열(string)을 이용하여 slicing을 하였습니다. 

(d) 는 loc[datetime.datetime(year, month, day):datetime.datetime(year, month, day)] 로 slicing을 한 예입니다. 



# (a) slicing DataFrame with position integer

df_ts[6:10]

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 


# (b) silcing using date strings 'year-month-day'

df_ts.loc['2019-12-01':'2019-12-10']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049


# (c) slicing using date strings 'month/day/year'

df_ts.loc['12/01/2019':'12/10/2019']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049


# (d) slicing using datetime objects

from datetime import datetime

df_ts.loc[datetime(2019, 12, 1):datetime(2019, 12, 10)]

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049






(2-3) 시계열데이터를 index로 가지는 pandas DataFrame 에서 날짜-시간 데이터 Selection 하기


'년', '년-월' 날짜 문자열을 df.loc['year'], df.loc['year-month'] 에 입력하면 해당 년(year), 월(month)의 모든 데이터를 선택할 수 있습니다. 


< '2019년'의 모든 데이터 선택 예 >


# selection of year '2019'

df_ts.loc['2019'] # df_ts['2019']

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305
2019-12-016
2019-12-027
2019-12-038
2019-12-049




< '2019년 12월'의 모든 데이터 선택 예 >


# selection of year-month '2019-12'

df_ts.loc['2019-12']

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 




(2-4) 시계열 데이터를 index로 가지는 pandas DataFrame에서 날짜-시간 데이터 잘라내기 (Truncate)


truncate() 메소드를 사용하면 before 이전 기간의 데이터를 잘라내거나 after 이후 기간의 데이터를 잘라낼 수 있습니다. 


< '2019-12-01' 일 이전(before) 기간 데이터 잘라내기 예 >

('2019-12-01'일은 삭제되지 않고 남아 있음)


# truncate before

df_ts.truncate(before='2019-12-01') # '2019-12-01' is not removed

col
2019-12-016
2019-12-027
2019-12-038
2019-12-049

 



< '2019-11-30'일 이후(after) 기간 데이터 잘라내기 예 >

('2019-11-30'일은 삭제되지 않고 남아 있음)


# truncate after

df_ts.truncate(after='2019-11-30') # '2019-11-30' is not removed

col
2019-11-250
2019-11-261
2019-11-272
2019-11-283
2019-11-294
2019-11-305

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

지난번 포스팅에서는 Python standard datetimepandas Timestamp 객체로 날짜-시간 데이터를 입력, 변환, 조회하는 방법을 소개하였습니다. 


이번 포스팅에서는 


(1) Python datetime, pandas Timestamp 객체를 문자열(string)로 변환

    (Converting native Python datetime, pandas Timestamp objects to Strings)


(2) 문자열(string)을 Python datetime, pandas Timestamp 객체로 변환

    (Converting Strings to Python datetime, pandas Timestamp)


에 대해서 차례대로 알아보겠습니다. 





  (1) Python datetime, pandas Timestamp 객체를 문자열(string)로 변환

      (Converting native Python datetime, pandas Timestamp objects to Strings)



(1-1) str() 함수를 이용하여 Python datetime 객체를 문자열(string)로 변환하기



# Create Python datetime objects

import datetime as dt

ts = dt.datetime(2019, 12, 22, 13, 30, 59) # (year, month, day, hour, minume, second)

type(ts)

[Out]: datetime.datetime

 

ts

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)



# converting Python datetime objects to Strings

ts_str = str(ts)

type(ts_str)

[Out]: str


ts_str

[Out]: '2019-12-22 13:30:59'


# indexing from a string

print('year-month-day:', ts_str[:10])

[Out]: year-month-day: 2019-12-22

print('hour:minute:second:', ts_str[10:])
[Out]: hour:minute:second:  13:30:59





(1-2) strftime() 메소드를 이용하여 Python datetime 객체를 문자열(string)로 변환하기


Python standard datetime 객체의 포맷에 맞추어서 strftime() 메소드의 괄호 안에 형태 지정(format specification)을 해줍니다. 가령 4자리 년(4-digit year), 월(month), 일(day), 0-23시간(0-23 hour), 분, 초의 형태로 지정을 하고 싶으면 strftime('%Y-%m-%d %H:%M:%S') 로 설정을 해주면 됩니다. 



import datetime as dt


ts = dt.datetime(2019, 12, 22, 13, 30, 59) # (year, month, day, hour, minume, second)

ts

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)


ts_strftime = ts.strftime('%Y-%m-%d %H:%M:%S')

type(ts_strftime)

[Out]: str


ts_strftime

[Out]: '2019-12-22 13:30:59'




년도를 '2자리 연도(2-digit year)'로 문자열 변환하고자 하면 '%y' 를 사용하며, 0-11시간(0-11 hour) 형태로 시간을 문자열 변환하고자 하면 '%I'를 사용합니다. 



# %Y: 4-digit year vs. %y: 2-digit year

# %H: 24-hour clock[00, 23] vs. %I: 12-hour clock [01, 11]

ts.strftime('%y-%m-%d %I:%M:%S')

[Out]: '19-12-22 01:30:59'

 



datetime.datetime(2019, 12, 22).strftime('%w') 는 주 단위의 요일을 일요일은 '0', 월요일은 '1', ..., 토요일은 '6'으로 순서대로 정수의 문자로 반환합니다. 



# '%w': weekday

print('----- %w: weekday as integer -----')

print('Sunday    :', dt.datetime(2019, 12, 22).strftime('%w'))

print('Monday    :', dt.datetime(2019, 12, 23).strftime('%w'))

print('Tuesday   :', dt.datetime(2019, 12, 24).strftime('%w'))

print('Wednesday :', dt.datetime(2019, 12, 25).strftime('%w'))

print('Thursday  :', dt.datetime(2019, 12, 26).strftime('%w'))

print('Friday    :', dt.datetime(2019, 12, 27).strftime('%w'))

print('Saturday  :', dt.datetime(2019, 12, 28).strftime('%w'))


[Out]: 
----- %w: weekday as integer -----
Sunday    : 0
Monday    : 1
Tuesday   : 2
Wednesday : 3
Thursday  : 4
Friday    : 5
Saturday  : 6



datetime.datetime(2019, 12, 22).strftime('%U')는 년 중 해당 주의 숫자(week nuber of the year)를 반환합니다. 이때 '%U'는 일요일이 주의 첫번째 일로 간주하는 반면에 '%W'는 월요일을 주의 첫번째 일로 간주하는 차이가 있습니다. 



# '%U': week number of the year [00, 53]. 

# Sunday is considered the first day of the week

dt.datetime(2019, 12, 22).strftime('%U') # '2019-12-22' is Sunday

[Out]: '51'

 




# '%W': week number of the year [00, 53]. 

# Monday is considered the first day of the week

dt.datetime(2019, 12, 22).strftime('%W') # '2019-12-22' is Sunday

[Out]: '50'

 

dt.datetime(2019, 12, 23).strftime('%W') # '2019-12-23' is Monday

[Out]: '51'





(1-3) pandas Timestamp를  strftime() 메소드를 사용하여 문자열(string)로 변환하기



import pandas as pd


pd_ts = pd.Timestamp(2019, 12, 22, 13, 30, 59)

pd_ts

[Out]: Timestamp('2019-12-22 13:30:59')


# convert pandas Timestamp to string

pd_ts.strftime('%y-%m-%d %I:%M:%S')

[Out]: '19-12-22 01:30:59'

 





  (2) 문자열(string)을 Python datetime, pandas Timestamp 객체로 변환

       (Converting Strings to Python datetime, pandas Timestamp)



(2-1) datetime.strptime() 함수를 이용하여 문자열을 Python datetime.datetime 객체로 변환하기


strptime(문자열, 날짜-시간 포맷) 의 괄호 안에는 문자열의 형태에 맞추어서 반환하고자 하는 날짜-시간 포맷을 설정해줍니다. 



# create a string with 'year-month-day hour:minute:second'

ts_str = '2019-12-22 13:30:59'

ts_str

[Out]: '2019-12-22 13:30:59'


# convert a string to datetime object

import datetime as dt

dt.datetime.strptime(ts_str, '%Y-%m-%d %H:%M:%S')

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)

 



여러개의 날짜-시간 문자열로 구성된 리스트를 List Comprehension 을 이용해서 datetime 객체 리스트로 만들 수 있습니다. 



# convert strings list using list comprehension

ts_str_list = ['2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25']


[dt.datetime.strptime(date, '%Y-%m-%d') for date in ts_str_list]

[Out]: 
[datetime.datetime(2019, 12, 22, 0, 0),
 datetime.datetime(2019, 12, 23, 0, 0),
 datetime.datetime(2019, 12, 24, 0, 0),
 datetime.datetime(2019, 12, 25, 0, 0)]




아래의 예는 pandas DataFrame에서 "Date" 문자열 칼럼과 "Time" 문자열 칼럼이 분리되어 있는 경우, (1) 먼저 이 두 칼럼을 "DateTime" 이라는 하나의 칼럼으로 합치고, (2) 그 다음에 문자열(Strings)을 DateTime 객체로 변환하는 방법에 대한 소개입니다. 


apply() 함수 안에 strptime() 함수를 lambda 무기명 함수 형태로 사용하였으며, 날짜와 시간 포맷도 위와는 조금 다르게 설정해보았습니다. ('%d/%m/%Y %H.%M.%S'))



import pandas as pd


# make a sample DataFrame with Date and Time (string format)

Date = ['01/12/2019', '01/12/2019', '01/12/2019']

Time = ['09.01.00', '09.01.01', '09.01.02']

val = [1, 2, 3]


df = pd.DataFrame({'Date': Date,

                   'Time': Time,

                   'val': val})


df

[Out]:

DateTimeval
001/12/201909.01.001
101/12/201909.01.012
201/12/201909.01.023

# combine 'Date' and 'Time' column as 'DateTime'

df['DateTime'] = df.Date + ' ' + df.Time

df

[Out]:

DateTimevalDateTime
001/12/201909.01.00101/12/2019 09.01.00
101/12/201909.01.01201/12/2019 09.01.01
201/12/201909.01.02301/12/2019 09.01.02


# check date type : strings

type(df.DateTime[0])

[Out]: str


# convert 'DateTime' column from strings to datetime object 

# using datetime.strptime() and lambda, apply function

from datetime import datetime


df.DateTime = df.DateTime.apply(lambda x: datetime.strptime(x, '%d/%m/%Y %H.%M.%S'))

df.set_index('DateTime', inplace=True)

df

[Out]:

DateTimeval
DateTime
2019-12-01 09:01:0001/12/201909.01.001
2019-12-01 09:01:0101/12/201909.01.012
2019-12-01 09:01:0201/12/201909.01.023


# check data type : datetime object Timestamp

type(df.index[0])

[Out]: pandas._libs.tslibs.timestamps.Timestamp




datetime.strptime(문자열, 날짜-시간 포맷) 의 경우 날짜-시간 문자열의 형태가 제한적이어서 아래와 같은 순서/형태의 문자열일 경우 ValueError 가 발생합니다. 이럴 경우 (2-2) dateutil.parser 의 parse() 함수를 사용하여 유연하게 날짜-시간 문자열을 파싱할 수 있습니다. 



dt.datetime.strptime('Dec 22, 2019 13:30:59', '%m %d, %Y %H:%M:%S')

[Out]: 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-42-7dfd356853ba> in <module>
----> 1 dt.datetime.strptime('Dec 22, 2019 13:30:59', '%m %d, %Y %H:%M:%S')

~/anaconda3/envs/py3.6_tf2.0/lib/python3.6/_strptime.py in _strptime_datetime(cls, data_string, format)
    563     """Return a class cls instance based on the input string and the
    564     format string."""
--> 565     tt, fraction = _strptime(data_string, format)
    566     tzname, gmtoff = tt[-2:]
    567     args = tt[:6] + (fraction,)

~/anaconda3/envs/py3.6_tf2.0/lib/python3.6/_strptime.py in _strptime(data_string, format)
    360     if not found:
    361         raise ValueError("time data %r does not match format %r" %
--> 362                          (data_string, format))
    363     if len(data_string) != found.end():
    364         raise ValueError("unconverted data remains: %s" %

ValueError: time data 'Dec 22, 2019 13:30:59' does not match format '%m %d, %Y %H:%M:%S'




(2-2) dateutil 라이브러리의 parser.parse() 함수를 이용하여 문자열을 datetime 객체로 변환하기


아래의 3개의 예에서 보는 바와 같이, dateutil 라이브러리의 parser.parse() 함수는 괄호 안에 다양한 형태의 날짜-시간 문자열을 유연하게 인식하여 datetime.datetime 객체로 반환해줍니다. (2-1)의 datetime.strptime() 함수와 비교했을 때 dateutil.parser의 parse() 함수는 상대적으로 편리하고 강력합니다. 



# Converting Strings to datetime.datetime objects using parser.parse()

from dateutil.parser import parse


parse('2019-12-22 13:30:59')

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)


parse('Dec 22, 2019 13:30:59')

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)


parse('Dec 22, 2019 01:30:59 PM')

[Out]: datetime.datetime(2019, 12, 22, 13, 30, 59)




parse() 함수의 괄호 안 문자열의 첫번째 숫자가 '월(month)' 인지 아니면 '일(day)' 인지를 dayfirst=False (default), dayfirst=True 옵션을 사용하여 명시적으로 지정해줄 수 있습니다. 



# month first

parse('01/12/2019 13:30:59')

[Out]: datetime.datetime(2019, 1, 12, 13, 30, 59)


# day first

parse('01/12/2019 13:30:59', dayfirst=True)

[Out]: datetime.datetime(2019, 12, 1, 13, 30, 59)




여러개의 날짜-시간 문자열로 구성된 리스트를 가지고 List Comprehension을 사용하여 datetime.datetime 객체 리스트를 생성할 수 있습니다. 



# convert strings list using list comprehension

ts_str_list = ['2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25']

[parse(date) for date in ts_str_list]

[Out]: 
[datetime.datetime(2019, 12, 22, 0, 0),
 datetime.datetime(2019, 12, 23, 0, 0),
 datetime.datetime(2019, 12, 24, 0, 0),
 datetime.datetime(2019, 12, 25, 0, 0)]

 




(3-3) pandas 의 pd.to_datetime()으로 날짜-시간 문자열을 pandas Timestamp 로 변환하기


* pandas Timestamp 에 대한 자세한 설명은 https://rfriend.tistory.com/497 참조하세요



# pandas Timestamp

import pandas as pd


pd.to_datetime('2019-12-22 13:30:59')

[Out]: Timestamp('2019-12-22 13:30:59')




여러개의 날짜-시간 문자열로 구성된 문자열 리스트를 가지고 pandas.to_datetime() 함수를 사용하여 pandas DatetimeIndex 를 생성할 수 있습니다. 이렇게 생성된 DatatimeIndex는 시계열 데이터로 이루어진 pandas Series나 pandas DataFrame 를 생성할 때 index로 사용할 수 있습니다. 



# pandas DatetimeIndex

ts_str_list = ['2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25']

pd.to_datetime(ts_str_list)

DatetimeIndex(['2019-12-22', '2019-12-23', '2019-12-24', '2019-12-25'], dtype='datetime64[ns]', freq=None)



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 Python 표준 라이브러리(Python standard library)로 시계열 데이터의 날짜, 시간을 처리, 조작, 분석할 때 사용하는 datetime 모듈의 4가지 데이터 유형 (4 data types in datetime module in python pandas library) 에 대해서 알아보겠습니다. 


(1) datetime.date: 년(year), 월(month), 일(day)

(2) datetime.time: 시간(hour), 분(minute), 초(second), 마이크로초(microsecond)

(3) datetime.datetime: date(년, 월, 일) & time(시간, 분, 초, 마이크로초)

(4) datetime.timedelta: 두 개의 datetime 값의 차이 (difference between 2 DateTime values)

                            --> 일(dayes), 초(seconds), 마이크로초(microseconds) 형태로 반환


이외 datetime.tzinfo, datetime.timezone 클래스가 있습니다. 



[ Python standard library: 4 data types in datetime module ]




  (1) datetime.date : 년(year), 월(month), 일(day)


date.date(year, month, day) 의 형태로 년/월/일 정보를 가지는 달력의 날짜(calendar date) 데이터 객체를 생성할 수 있으며, 날짜 객체로 부터 year, month, day attribute로 년(year), 월(month), 일(day) 데이터를 추출할 수 있습니다. 



import pandas as pd

import datetime as dt


# date: (year, month, day)

mydate = dt.date(2019, 12, 21)

mydate

datetime.date(2019, 12, 21)

print('year:', mydate.year)

print('month:', mydate.month)

print('day:', mydate.day)

year: 2019
month: 12
day: 21





  (2) datetime.time : 시간(hour), 분(minute), 초(second), 마이크로초(microsecond)


datetime.time 클래스를 사용하여 시간(hour), 분(minute), 초(second), 마이크로초(microsecond)의 시계의 시간 데이터 객체를 생성, 조회할 수 있습니다. 



# time: (hour, minute, second, microsecond)

mytime = dt.time(20, 46, 22, 445671)

mytime

datetime.time(20, 46, 22, 445671)

print('hour:', mytime.hour)

print('minute:', mytime.minute)

print('second:', mytime.second)

print('microsecond:', mytime.microsecond)

hour: 20
minute: 46
second: 22
microsecond: 445671





  (3) datetime.datetime : date(year, month, day)
                                  & time(hour, minute, second, microsecond)


datetime.datetime 은 위의 (1)번의 datetime.date 와 (2)번의 datetime.time 을 합쳐놓아서 날짜(date)와 시간(time) 정보를 모두 가지는 날짜-시간 객체입니다. 


datetime.datetime.now() 는 현재 날짜-시간을 객체로 가져옵니다. 

year, month, day, hour, minute, second, microsecond attribute를 사용하여 datetime 객체로 부터 년, 월, 일, 시간, 분, 초, 마이크로초 정보를 가져올 수 있습니다. 



# datetime: (year, month, day, hour, minute, second, microsecond)

now = dt.datetime.now() # current date and time

now

datetime.datetime(2019, 12, 21, 20, 46, 22, 445671)


print('year:', now.year)

print('month:', now.month)

print('day:', now.day)

print('hour:', now.hour)

print('minute:', now.minute)

print('second:', now.second)

print('microsecond:', now.microsecond)

year: 2019
month: 12
day: 21
hour: 20
minute: 46
second: 22
microsecond: 445671




두 개의 datetime.datetime 의 날짜-시간 객체끼리 - 연산을 통해 날짜-시간 차이를 계산할 수 있습니다. 

이들 차이(delta)에 대해 days, seconds, microseconds attribute로 날짜 차이, 초 차이, 마이크로초 차이 정보를 추출할 수 있습니다. 



now = dt.datetime.now() # current date and time

delta = now - dt.datetime(2019, 12, 1, 23, 59, 59)

delta

datetime.timedelta(19, 74783, 445671)


print('delta days:', delta.days)

print('delta seconds:', delta.seconds)

print('delta microseconds:', delta.microseconds)

delta days: 19
delta seconds: 74783
delta microseconds: 445671





  (4) datetime.timedelta : 두 개의 datetime 값 간의 차이 

                                   (the difference between 2 datetime values)


두 개의 datetime 객체 값 간의 차이를 구할 때 timedelta 클래스를 사용하면 편리하게 특정 일/시간 차이가 나는 날짜-시간을 구할 수 있습니다. 


datetime.timedelta(days, seconds, microseconds) 의 형태로 날짜-시간 차이 데이터를 저장합니다. 

weeks = 1 은 7 days 로 변환되며, minutes = 1 은 60 seconds 로 변환되고, milliseconds = 1000 은 1 seconds 로 변환됩니다. 



# timedelat() class

import datetime as dt

delta = dt.timedelta(days=1, 

                     seconds=20, 

                     microseconds=1000

                     milliseconds=5000, 

                     minutes=5, 

                     hours=12, 

                     weeks=2)


delta

datetime.timedelta(15, 43525, 1000)

 

# check

days = 1

weeks = 2

seconds = 20

microseconds = 1000

milliseconds = 5000

minutes = 5

hours = 12


print('days:', days + 7*weeks)

print('seconds:', seconds + 60*minutes + 60*60*hours + milliseconds/1000)

print('microsecond:', microseconds)

days: 15
seconds: 43525.0
microsecond: 1000




timedelta 클래스를 사용하여 각각 1 day, 1 day 10 seconds, 1 day 10 seocnds 100 microseconds 를 더해보겠습니다. 



# timedelta: difference between two datetime values

# (days)

dt.datetime(2019, 12, 21) + dt.timedelta(1)  # + 1 day

datetime.datetime(2019, 12, 22, 0, 0)


# (days, seconds)

dt.datetime(2019, 12, 21, 23, 59, 59) + dt.timedelta(1, 10)  # + 1 day 10 seconds

datetime.datetime(2019, 12, 23, 0, 0, 9)


# (days, seconds, microseconds)

dt.datetime(2019, 12, 21, 23, 59, 59, 1000) + dt.timedelta(1, 10, 100)  # + 1day 10seconds 100microseconds

datetime.datetime(2019, 12, 23, 0, 0, 9, 1100)




이번에는 위와 반대로 datetime.timedelta 클래스로 1 day, 10 seconds, 100 microseconds를 빼보겠습니다. 



# minus

dt.datetime(2019, 12, 21, 23, 59, 59, 1000) - dt.timedelta(1, 10, 100)

datetime.datetime(2019, 12, 20, 23, 59, 49, 900)




timedelta 클래스에 곱하기와 나누기를 적용해서 빼는 것도 가능합니다.  첫번째의 - 5 * datetime.timedelta(1) = - 5 days 를 빼라는 의미이며, 두번째의 - datetime.timedelta(10)/ 2 = - 5 days 역시 10 days를 2로 나눈 5 days를 빼라는 의미로 동일한 결과를 반환합니다. 



# multiplication

dt.datetime(2019, 12, 21, 23, 59, 59, 1000) - 5 * dt.timedelta(1)

datetime.datetime(2019, 12, 16, 23, 59, 59, 1000)


# divide

dt.datetime(2019, 12, 21, 23, 59, 59, 1000) - dt.timedelta(10) / 2

datetime.datetime(2019, 12, 16, 23, 59, 59, 1000)




pandas Timestamp 클래스를 이용한 날짜-시간 입력, 변환, 정보조회 방법은 https://rfriend.tistory.com/497 를 참고하세요. 


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. 



728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 Python pandas library를 이용하여 시계열 데이터(time series data)를 10분, 20분, 1시간, 1일, 1달 등의 특정 시간 단위(time span) 구간별로 집계/요약 하는 방법을 소개하겠습니다. (Downsampling)


(* PostgreSQL, Greenplum database로 특정 시간 단위 구간별 시계열 데이터 집계, 요약하는 방법은  https://rfriend.tistory.com/495 참조)


이전에 소개했었던 groupby() operator를 사용해서 그룹별로 집계/요약하는 방법을 사용할 수도 있는데요, 시계열 데이터의 경우 pandas의 resample() method를 사용하면 좀더 편리하고 코드도 깔끔하게 시간 단위 구간별로 시계열 데이터를 집계/요약할 수 있습니다. 





먼저 '년-월-시간:분:초'로 이루어진 time-stamp 를 index로 가지고, 가격(price)와 수량(amount) 의 두 개의 칼럼을 가지는 간단한 시계열 데이터를 만들어보겠습니다. pandas의 date_range(from, to, freq) 함수를 해서 '2분 간격(freq='2min')의 date range 데이터를 만들었습니다. 이 중에서 20개 행만 선택해서 예를 들어보겠습니다. 



import pandas as pd

import numpy as np


# generate time series index

range = pd.date_range('2019-12-19', '2019-12-20', freq='2min')

df = pd.DataFrame(index = range)[:20]


# add 'price' columm using random number

np.random.seed(seed=1004) # for reproducibility

df['price'] = np.random.randint(low=10, high=100, size=20)


# add 'amount' column unsing random number

df['amount'] = np.random.randint(low=1, high=5, size=20)


print('Shape of df DataFrame:', df.shape)

[Out]:Shape of df DataFrame: (20, 2)


df

[Out]:

priceamount
2019-12-19 00:00:00124
2019-12-19 00:02:00212
2019-12-19 00:04:00411
2019-12-19 00:06:00794
2019-12-19 00:08:00612
2019-12-19 00:10:00811
2019-12-19 00:12:00243
2019-12-19 00:14:00621
2019-12-19 00:16:00763
2019-12-19 00:18:00631
2019-12-19 00:20:00952
2019-12-19 00:22:00821
2019-12-19 00:24:00823
2019-12-19 00:26:00701
2019-12-19 00:28:00304
2019-12-19 00:30:00331
2019-12-19 00:32:00222
2019-12-19 00:34:00773
2019-12-19 00:36:00583
2019-12-19 00:38:00963

 




  (1) 10분 단위 구간별로 각 칼럼의 첫번째 값(first value), 마지막 값(last value) 구하기

      (select the first and last value by 10 minutes time span using pandas resample method)


resample('10T') 는 '년-월-일 시간:분:초' 의 시계열 index를 10분 단위의 동일 간격별로 데이터를 뽑으라는 뜻입니다. pandas의 groupby() 에서 split-apply-combine에서 동일 시간대 간격으로 split 의 역할을 한다고 생각할 수 있습니다


[ resample() 메소드의 시간 단위 구간 설정 ]

- 5분 단위 구간    : resample('5T')

- 10분 단위 구간  : resample('10T')

- 20분 단위 구간 : resample('20T')

- 1시간 단위 구간 : resample('1H')

- 1일 단위 구간    : resample('1D')

- 1주일 단위 구각 : resample('1W')

- 1달 단위 구간    : resample('1M')

- 1년 단위 구간    : resample('1Y')


각 시간 단위 구간(time span) 별로 시간 순서대로 정렬된 상태에서 첫번째 행의 값(first row's value)은 first() 메소드를 사용하며, 마지막 행의 값(last row's value)은 last() 메소드를 사용해서 구할 수 있습니다. (groupby 의 split-apply-combine 중에서 apply 에 해당한다고 생각할 수 있습니다)


# Resampling by a given time span (group)

# : first, last

df_summary = pd.DataFrame()


df_summary['price_10m_first'] = df.price.resample('10T').first()

df_summary['price_10m_last'] = df.price.resample('10T').last()

df_summary['amount_10m_first'] = df.amount.resample('10T').first()

df_summary['amount_10m_last'] = df.amount.resample('10T').last()


df_summary

price_10m_firstprice_10m_lastamount_10m_firstamount_10m_last
2019-12-19 00:00:00126142
2019-12-19 00:10:00816311
2019-12-19 00:20:00953024
2019-12-19 00:30:00339613

 




  (2) 10분 단위 구간별로 숫자형 데이터의 합계, 누적 합계 구하기

     (sum, cumulative sum by 10 minutes time span using pandas resample method)



# Resampling by a given time span (group)

# sum, cumulative sum

df_summary = pd.DataFrame()


df_summary['price_10m_sum'] = df.price.resample('10T').sum()

df_summary['price_10m_cumsum'] = df.price.resample('10T').sum().cumsum()

df_summary['amount_10m_sum'] = df.amount.resample('10T').sum()

df_summary['amount_10m_cumsum'] = df.amount.resample('10T').sum().cumsum()


df_summary

price_10m_sumprice_10m_cumsumamount_10m_sumamount_10m_cumsum
2019-12-19 00:00:002142141313
2019-12-19 00:10:00306520922
2019-12-19 00:20:003598791133
2019-12-19 00:30:0028611651245

 




  (3) 10분 단위 구간별로 최소값, 최대값, 평균, 중앙값, 범위 구하기

   (summary statistics by 10 minutes time span using pandas resample method)


최소값(min), 최대값(max), 평균(mean), 중앙값(median) 요약통계량은 min(), max(), mean(), median() 메소드를 이용하여 구할 수 있으며, 범위(range)는 해당 메소드가 없어서 범위(range) = 최대값(max) - 최소값(min) 의 계산을 해서 구하였습니다. 



# Resampling by a given time span (group)

# min, max, mean, median, range

df_summary = pd.DataFrame()


df_summary['price_10m_min'] = df.price.resample('10T').min()

df_summary['price_10m_max'] = df.price.resample('10T').max()

df_summary['price_10m_mean'] = df.price.resample('10T').mean()

df_summary['price_10m_median'] = df.price.resample('10T').median()

df_summary['price_10m_range'] = \

    df.price.resample('10T').max() - df.price.resample('10T').min()


df_summary

price_10m_minprice_10m_maxprice_10m_meanprice_10m_medianprice_10m_range
2019-12-19 00:00:00127942.84167
2019-12-19 00:10:00248161.26357
2019-12-19 00:20:00309571.88265
2019-12-19 00:30:00229657.25874




  (4) 10분 단위 구간별로 분산(variance), 표준편차(standard deviation) 구하기

    (variance, standard deviation by 10 minutes time span using pandas resample(() method)


resample('10T') 로 10분 단위 구간별로 데이터를 그룹으로 뽑고, var() 메소드로 표본 분산(sample variance)을 구합니다. (* 참고: 모집단 분산(population variance)이 편차 제곱의 합을 원소의 개수 N으로 나누어주는 반면에, 표본 분산(sample variance)는 편차 제곱의 합을 원소의 개수에서 1개를 뺀 N-1로 나누어준다는 차이점이 있습니다)


표본 표분편차(sample standard deviation)을 직접 구할 수 있는 메소드가 없어서 표본 분산에 제곱근(square root)을 취하여 표본 표준편차를 구하였습니다. 



# Resampling by a given time span (group)

# variance, standard deviation

df_summary = pd.DataFrame()


# sample variance 1/(N-1)*sigma(X-X_bar)^2

df_summary['price_10m_var'] = df.price.resample('10T').var() 


# sample standard deviation using sqrt(var) formula

df_summary['price_10m_stddev'] = np.sqrt(df.price.resample('10T').var())

price_10m_varprice_10m_stddev
2019-12-19 00:00:00767.227.698375
2019-12-19 00:10:00499.722.353971
2019-12-19 00:20:00624.224.983995
2019-12-19 00:30:00930.730.507376




  (5) 특정 시간 단위 구간별로 요약 통계량 구하는 사용자 정의 함수

     (User Defined Function for aggregating summary statistics by specific time span)


위의 (1) ~ (4)번에서 pandas의 resample() 메소드를 사용하여 시계열 데이터를 특정 시간 단위 구간별로 샘플링하고, 첫번째 값(first), 마지막 값(last), 합(sum), 누적합(cumsum), 최소값(min), 최대값(max), 평균(mean), 중앙값(median), 구간(range), 분산(variance), 표준편차(standard deviation) 을 구하는 방법을 소개하였습니다. 


이를 좀더 사용하기 편리하도록 아래의 매개변수를 인자로 가지는 사용자 정의 함수를 정의해보겠습니다. 


[ resample_summary() 사용자 정의 함수 매개변수 ] 


  (a) ts_data : '년-월-일 시간:분:초'의 시계열 범위 데이터를 index로 가지는 시계열 데이터 DataFrame

  (b) col_nm : 집계/요약의 대상이 되는 칼럼 이름

  (c) time_span : 특정 시간 단위 구간 (예: 10분 단위 '10T', 1시간 단위 '1H', 1일 단위 '1D' 등)

  (d) func_list : 집계/요약할 함수 (예: 첫번째 값 'first', 마지막 값 'last', 합 'sum', 누적합 'cumsum', 최소값 'min', 최대값 'max', 평균 'mean', 중앙값 'median', 범위 'range', 표본 분산 'var', 표본 표준편차 'stddev' 등)


공통으로 사용되는 부분인 resampler = ts_data[col_nm].resample(time_span) 를 resampler 객체로 만들어서 반복해서 사용하였습니다. 


그리고 사용자가 입력(선택)한 집계/요약 함수만 집계/요약하여 반환하도록 if [function name] in func_list 조건문을 추가해주었습니다. 


집계/요약된 값의 칼럼 이름은 이해하기 쉽도록 접미사(suffix)를 붙어서 [ 기존 칼럼 이름 + '_' + 시간 단위 구간 + '_' + 집계/요약함수 ] 를 이어붙여서 새로 만들어주었습니다. (예: price_10T_first)



# UDF of Resampling by column name, time span and summary functions 

def resample_summary(ts_data, col_nm, time_span, func_list):

    

    import numpy as np

    import pandas as pd

    

    df_summary = pd.DataFrame() # blank DataFrame to store results

    

    # resampler with column name by time span (group by)

    resampler = ts_data[col_nm].resample(time_span)

    

    # aggregation functions with suffix name

    if 'first' in func_list:

        df_summary[col_nm + '_' + time_span + '_first'] = resampler.first()

    

    if 'last' in func_list:

        df_summary[col_nm + '_' + time_span + '_last'] = resampler.last()

        

    if 'sum' in func_list:

        df_summary[col_nm + '_' + time_span + '_sum'] = resampler.sum()

        

    if 'cumsum' in func_list:

        df_summary[col_nm + '_' + time_span + '_cumsum'] = resampler.sum().cumsum()

        

    if 'min' in func_list:

        df_summary[col_nm + '_' + time_span + '_min'] = resampler.min()

        

    if 'max' in func_list:

        df_summary[col_nm + '_' + time_span + '_max'] = resampler.max()

    

    if 'mean' in func_list:

        df_summary[col_nm + '_' + time_span + '_mean'] = resampler.mean()

        

    if 'median' in func_list:

        df_summary[col_nm + '_' + time_span + '_median'] = resampler.median()

        

    if 'range' in func_list:

        df_summary[col_nm + '_' + time_span + '_range'] = resampler.max() - resampler.min()

        

    if 'var' in func_list:

        df_summary[col_nm + '_' + time_span + '_var'] = resampler.var() # sample variance

        

    if 'stddev' in func_list:

        df_summary[col_nm + '_' + time_span + '_stddev'] = np.sqrt(resampler.var())

    

    return df_summary

 



위의 (5)번에서 정의한 resample_summary() 사용자 정의 함수를 이용하여, df 데이터셋의 'price' 칼럼에 대해 '10분 단위 구간별로(time_span = '10T') 첫번째 값('first'), 마지막 값('last'), 합('sum'), 누적합('cumsum'), 최소값('min'), 최대값('max') 을 구해보겠습니다. 



func_list = ['first', 'last', 'sum', 'cumsum', 'min', 'max']


resample_summary(df, 'price', '10T', func_list)

price_10T_firstprice_10T_lastprice_10T_sumprice_10T_cumsumprice_10T_minprice_10T_max
2019-12-19 00:00:0012612142141279
2019-12-19 00:10:0081633065202481
2019-12-19 00:20:0095303598793095
2019-12-19 00:30:00339628611652296

 



이번에는 시간 단위 구간을 '20분 ('20T')'으로 늘려서 resample_summary() 사용자 정의 함수를 사용해 보겠습니다. 



func_list = ['mean', 'median', 'range', 'var', 'stddev']


resample_summary(df, 'price', '20T', func_list)

price_20T_meanprice_20T_medianprice_20T_rangeprice_20T_varprice_20T_stddev
2019-12-19 00:00:0052.061.569657.11111125.634179
2019-12-19 00:20:0064.573.574750.27777827.391199

 



이번에는 집계/요약의 대상이 되는 칼럼을 '수량(amount)' 으로 바꾸어서 resample_summary() 사용자 정의 함수를 사용해 보겠습니다. 



func_list = ['mean', 'median', 'range', 'var', 'stddev']


resample_summary(df, 'amount', '20T', func_list) # with 'amount' column

amount_20T_meanamount_20T_medianamount_20T_rangeamount_20T_varamount_20T_stddev
2019-12-19 00:00:002.22.031.5111111.229273
2019-12-19 00:20:002.32.531.1222221.059350

 



집계/요약할 함수를 평균('mean'), 중앙값('median'), 범위('range'), 분산('var'), 표준편차('stddev')로 바꾸어서 resample_summary() 사용자 정의 함수를 사용해 보겠습니다. 



func_list = ['mean', 'median', 'range', 'var', 'stddev']


resample_summary(df, 'price', '10T', func_list)

price_10T_meanprice_10T_medianprice_10T_rangeprice_10T_varprice_10T_stddev
2019-12-19 00:00:0042.84167767.227.698375
2019-12-19 00:10:0061.26357499.722.353971
2019-12-19 00:20:0071.88265624.224.983995
2019-12-19 00:30:0057.25874930.730.507376

 




이번에는 데이터를 2019-12-19 일에서 2020-01-18일 까지 약 한달 간의 시계열 데이터를 난수로 생성해서 ==> 시간 단위 구간을  1시간('1H'), 1일('1D'), 1주('1W'), 1달('1M') 로 바꾸어가면서 집계/요약을 해보겠습니다. 



# generate time series index

range = pd.date_range('2019-12-19', '2020-01-18', freq='2min') # one month period

df_1m = pd.DataFrame(index = range)


# add 'price' columm using random number

np.random.seed(seed=1004) # for reproducibility

df_1m['price'] = np.random.randint(low=10, high=100, size=len(df))


# add 'amount' column unsing random number

df_1m['amount'] = np.random.randint(low=1, high=5, size=len(df))


print('Shape of df_1m DataFrame:', df_1m.shape)

Shape of df_1m DataFrame: (21601, 2)

# by 1 Hour

func_list = ['first', 'sum', 'mean', 'stddev']
resample_summary(df_1m, 'price', '1H', func_list).head() # by 1 Hour
price_1H_firstprice_1H_sumprice_1H_meanprice_1H_stddev
2019-12-19 00:00:0012168456.13333325.143359
2019-12-19 01:00:0044153451.13333324.764732
2019-12-19 02:00:0070143547.83333325.223256
2019-12-19 03:00:0022186762.23333324.842515
2019-12-19 04:00:0080176658.86666723.292345


# by 1 Day

func_list = ['first', 'sum', 'mean', 'stddev']
resample_summary(df_1m, 'price', '1D', func_list).head() # by 1 Day
price_1D_firstprice_1D_sumprice_1D_meanprice_1D_stddev
2019-12-19123974655.20277825.946355
2019-12-20264017155.79305625.547419
2019-12-21873973755.19027826.238314
2019-12-22653935054.65277825.675714
2019-12-23693983555.32638926.230239


# by 1 Week
func_list = ['first', 'sum', 'mean', 'stddev']
resample_summary(df_1m, 'price', '1W', func_list) # by 1 Week
price_1W_firstprice_1W_sumprice_1W_meanprice_1W_stddev
2019-12-221215900455.20972225.842990
2019-12-296927294354.15535726.084089
2020-01-057227474054.51190525.840425
2020-01-124127656354.87361126.295806
2020-01-195519709054.73201925.984207


# by 2 Weeks

func_list = ['first', 'sum', 'mean', 'stddev']
resample_summary(df_1m, 'price', '2W', func_list) # by 2 Week
price_2W_firstprice_2W_sumprice_2W_meanprice_2W_stddev
2019-12-221215900455.20972225.842990
2020-01-056954768354.33363125.961867
2020-01-194147365354.81460526.164988


# by 1 Month
func_list = ['first', 'sum', 'mean', 'stddev']
resample_summary(df_1m, 'price', '1M', func_list) # by 1 Month
price_1M_firstprice_1M_sumprice_1M_meanprice_1M_stddev
2019-12-311251003654.49102625.912189
2020-01-314867030454.758925

26.117109





  (6) 10분 단위 구간별 수량 가중 평균 가격 구하기 

   (amount-weighted average of price by 10 minutes time span using pandas resample method)


가격('price')과 수량('amount')을 곱해서 만든 새로운 칼럼 'price_mult_amt' 를 만들어주고, resample('10T') 메소드를 사용해서 10분 단위 구간별로 수량 가중 평균 가격(10분 단위 구간별 구입가격*구입수량 합 / 전체 구입수량 합)을 구해주었습니다.  


참고로, 아래 코드에서 역 슬래쉬('\')는 코드를 한줄에 다 쓰기에 너무 길 경우에 '다음 줄로 넘겨서 쓴 코드를 앞코드와 이어진 코드'로 인식하게 만들어 줄 때 사용합니다.  



# function: weighted average

# 각 시간대의 수량가중평균가격(sum(price*amount)/sum(amount))

# (*가중평균은 특정 시간대에 발생한 모든 구입건의 구입가격*구입수량 합/전체 구입수량 합)


df_summary = pd.DataFrame()


df['price_mult_amt'] = df['price']*df['amount']

df_summary['price_10m_amount_weighted_avg'] = \

    df.price_mult_amt.resample('10T').sum() / df.amount.resample('10T').sum()


df_summary

price_10m_amount_weighted_avg
2019-12-19 00:00:0043.769231
2019-12-19 00:10:0056.222222
2019-12-19 00:20:0064.363636
2019-12-19 00:30:0064.166667




  (7) 10분 단위 구간별 집계/요약 통계량 결과를 csv 파일로 내보내기 

   (exporting summary results by 10 minutes time span into 'csv file' using pandas to_csv() method)


위의 (5)번에서 정의한 resample_summary() 사용자 정의 함수(UDF)를 사용하여 10분 단위('10T') 구간별로 가격('price') 칼럼에 대해 'first', 'last', 'sum', 'cumsum', 'min', 'max', 'mean', 'median', 'range', 'var', 'stddev'를 모두 집계/요약한 데이터 프레임을 만들고, 


이어서, 10단위 구간별로 수량 가중 평균 가격(amount-weighted average of price)을 구한 후에, 


이를 취합한 결과 데이터프레임을 pandas의 to_csv() 메소드를 사용하여 'df_summary.csv' 라는 이름의 csv 파일로 내보내보겠습니다. '년-월-일 시간:분:초'의 시간 정보가 들어있는 index도 같이 내보내야 하므로 to_csv() 메소드 내 index=True 옵션으로 설정해주었으며, 결측값이 존재할 경우 na_rep='NaN' 으로 표기하도록 설정해주었고, 요약통계량 값이 부동소수형(float) 일 경우 소수점 2번째 자리까지만 표기하도록 float_format='%.2f' 옵션을 설정해주었습니다. 



# summary statistics using resample_summary() User Defiened Function, refer to (5)

func_list = ['first', 'last', 'sum', 'cumsum', 'min', 'max', 

            'mean', 'median', 'range', 'var', 'stddev']


df_summary = resample_summary(df, 'price', '10T', func_list)


# amount-weighted average of price, refer to (6)

df['price_mult_amt'] = df['price']*df['amount']

df_summary['price_10m_amount_weighted_avg'] = \

    df.price_mult_amt.resample('10T').sum()/ df.amount.resample('10T').sum()



# export df_summary DataFrame into csv file

import os


work_dir = os.getcwd() # current working directory

file_path = os.path.join(work_dir, 'df_summary.csv')

df_summary.to_csv(file_path

                  , index=True             # include index

                  , na_rep='NaN'           # representation of missing value

                  , float_format = '%.2f') # 2 decimal places

 



많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)



728x90
반응형
Posted by Rfriend
,

Lag, Lead window function은 시계열 데이터를 처리할 때 많이 사용하는 매우 유용한 함수입니다. 


이번 포스팅에서는 PostgreSQL, Python (pandas), R (dplyr) 을 이용해서 그룹별로 행을 하나씩 내리기, 올리기 (lag or lead a row by group using PostgreSQL, Python, R) 하는 방법을 소개하겠습니다. 





  1. PostgreSQL로 그룹별로 특정 칼럼의 행을 하나씩 내리기, 올리기 

    (lag, lead a row by group using PostgreSQL lag(), lead() window function)


연월일(dt), 그룹ID(id), 측정값(val) 의 세 개 칼럼을 가진 시계열 데이터의 테이블을 PostgreSQL DB에 만들어보겠습니다. 



DROP TABLE IF EXISTS ts;

CREATE TABLE ts (

    dt date not null

    , id text not null  

    , val numeric not null

);


INSERT INTO ts VALUES 

  ('2019-12-01', 'a', 5)

, ('2019-12-02', 'a', 6)

, ('2019-12-03', 'a', 7)

, ('2019-12-04', 'a', 8)

, ('2019-12-01', 'b', 13)

, ('2019-12-02', 'b', 14)

, ('2019-12-03', 'b', 15)

, ('2019-12-04', 'b', 16);


SELECT * FROM ts ORDER BY id, dt;




PostgreSQL 의 LAG(value, offset, default), LEAD(value, offset, default) Window function을 이용해서 그룹ID('id') 별로 측정값('val')의 행을 하나씩 내리기(lag), 올리기(lead) 해보겠습니다. 행을 내리거나 올린 후에 빈 셀의 값은 'NULL'로 지정해주었습니다. 


LAG(), LEAD() 함수를 사용할 때 그룹ID('id')별로 년월일('dt') 을 기준으로 내림차순 정렬(OVER(PARTITIO BY id ORDER BY dt)) 을 해줍니다. 



-- lead() windows function

SELECT 

    *

    , LAG(val, 1, NULL) OVER (PARTITION BY id ORDER BY dt) AS val_lag_1

    , LEAD(val, 1, NULL) OVER (PARTITION BY id ORDER BY dt) AS val_lead_2

FROM ts;

 



lag(), lead() 함수를 사용해서 lag_1, lead_2 라는 새로운 칼럼을 추가한 'ts_lag_lead' 라는 이름의 테이블을 만들어보겠습니다. 



DROP TABLE IF EXISTS ts_lag_lead;

CREATE TABLE ts_lag_lead AS (

SELECT 

    *

    , LAG(val, 1, NULL) OVER (PARTITION BY id ORDER BY dt) AS val_lag_1

    , LEAD(val, 1, NULL) OVER (PARTITION BY id ORDER BY dt) AS val_lead_2

FROM ts

);


SELECT * FROM ts_lag_lead ORDER BY id, dt;

 





  2. Python pandas 로 DataFrame 내 그룹별 특정 칼럼의 행을 하나씩 내리기, 올리기 

     (shift a row by group using Python pandas library)


위에서 PostgreSQL의 lag(), lead() window function과 똑같은 작업을 Python pandas 를 가지고 수행해보겠습니다. 


먼저 dt, id, val의 칼럼을 가진 pandas DataFrame 시계열 데이터를 만들어보겠습니다. 



import pandas as pd


ts = pd.DataFrame({'dt': ['2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04', 

                          '2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04'], 

                  'id': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], 

                  'val': [5, 6, 7, 8, 13, 14, 15, 16]})


ts

dtidval
02019-12-01a5
12019-12-02a6
22019-12-03a7
32019-12-04a8
42019-12-01b13
52019-12-02b14
62019-12-03b15
72019-12-04b16

 



shift() 함수를 쓰기 전에 sort_values() 함수로 정렬을 해주는데요, lag 는 내림차순 정렬, lead는 오름차순 정렬임에 주의해야 합니다. (PostgreSQL, R 대비 Python이 좀 불편하긴 하네요 -,-;)


(a) lagsort_values() 함수를 이용해서 년월일('dt')를 기준으로 내림차순 정렬 (ascending=True) 한 후, 'id' 그룹별로 'val' 값을 하나씩 내려기 groupby('id')['val'].shift(1)


(b) lead: sort_values() 함수를 이용해서 년월일('dt')를 기준으로 오름차순 정렬 (ascending=False) 한 후, 'id' 그룹별로 'val' 값을 하나씩 올리기 groupby('id')['val].shift(1)



# lag a row by group 'id'

ts['val_lag_1'] =  ts.sort_values(by='dt', ascending=True).groupby('id')['val'].shift(1)


# lead a row by group 'id'

ts['val_lead_1'] = ts.sort_values(by='dt', ascending=False).groupby('id')['val'].shift(1)


ts.sort_values(by=['id', 'dt'])

dtidvalval_lag_1val_lead_1
02019-12-01a5NaN6.0
12019-12-02a65.07.0
22019-12-03a76.08.0
32019-12-04a87.0NaN
42019-12-01b13NaN14.0
52019-12-02b1413.015.0
62019-12-03b1514.016.0
72019-12-04b1615.0NaN

 





  3. R dplyr 로 dataframe 내 그룹별 특정 칼럼의 행을 하나씩 내리기, 올리기 

     (lag, lead a row by group using R dplyr library)



위에서 PostgreSQL의 lag(), lead() window function과 똑같은 작업을 R dplyr library를 가지고 수행해보겠습니다. 


먼저 dt, id, val의 칼럼을 가진 R DataFrame 시계열 데이터를 만들어보겠습니다. 



#install.packages("dplyr")

library(dplyr)


dt <- c(rep(c('2019-12-01', '2019-12-02', '2019-12-03', '2019-12-04'), 2))

id <- c(rep('a', 4), rep('b', 4)) 

val <- c(5, 6, 7, 8, 13, 14, 15, 16)


ts <- data.frame(dt, id, val)

ts

A data.frame: 8 × 3
dtidval
<fct><fct><dbl>
2019-12-01a5
2019-12-02a6
2019-12-03a7
2019-12-04a8
2019-12-01b13
2019-12-02b14
2019-12-03b15
2019-12-04b16

 



R은 Postgresql 처럼 lag(), lead() window function을 가지고 있고 dplyr library의 chain operator를 써서 arrange() 함수로 'dt' 기준 내림차순 정렬하고, group_by(id)를 써서 그룹ID('id')별로 lag(), lead()를 무척 편리하게 적용해서 새로운 변수를 생성(mutate)할 수 있습니다. 



ts <- ts %>% 

    arrange(dt) %>%

    group_by(id)  %>% 

    mutate(val_lag_1 = lag(val, 1), 

          val_lead_1 = lead(val, 1))

 


arrange(ts, id, dt)

A grouped_df: 8 × 5
dtidvalval_lag_1val_lead_1
<fct><fct><dbl><dbl><dbl>
2019-12-01a5NA6
2019-12-02a657
2019-12-03a768
2019-12-04a87NA
2019-12-01b13NA14
2019-12-02b141315
2019-12-03b151416
2019-12-04b1615NA




많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요.



728x90
반응형
Posted by Rfriend
,

이번 포스팅에서는 Python pandas DataFrame을 만들려고 할 때 "ValueError: If using all scalar values, you must pass an index" 에러 해결 방안 4가지를 소개하겠습니다.

아래의 예처럼 dictionary로 키, 값 쌍으로 된 데이터를 pandas DataFrame으로 만들려고 했을 때, 모든 값이 스칼라 값(if using all scalar values) 일 경우에 "ValueError: If using all scalar values, you must pass an index" 에러가 발생합니다. 

import pandas as pd

df = pd.DataFrame({'col_1': 1, 

                  'col_2': 2})

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-2-73d6f192ba2a> in <module>()
      1 df = pd.DataFrame({'col_1': 1, 
----> 2                   'col_2': 2})

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
    273                                  dtype=dtype, copy=copy)
    274         elif isinstance(data, dict):
--> 275             mgr = self._init_dict(data, index, columns, dtype=dtype)
    276         elif isinstance(data, ma.MaskedArray):
    277             import numpy.ma.mrecords as mrecords

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in _init_dict(self, data, index, columns, dtype)
    409             arrays = [data[k] for k in keys]
    410 
--> 411         return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
    412 
    413     def _init_ndarray(self, values, index, columns, dtype=None, copy=False):

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in _arrays_to_mgr(arrays, arr_names, index, columns, dtype)
   5494     # figure out the index, if necessary
   5495     if index is None:
-> 5496         index = extract_index(arrays)
   5497     else:
   5498         index = _ensure_index(index)

~/anaconda3/envs/py3.5_tf1.4/lib/python3.5/site-packages/pandas/core/frame.py in extract_index(data)
   5533 
   5534         if not indexes and not raw_lengths:
-> 5535             raise ValueError('If using all scalar values, you must pass'
   5536                              ' an index')
   5537 

ValueError: If using all scalar values, you must pass an index




이 에러를 해결하기 위한 4가지 방법을 차례대로 소개하겠습니다. 


 (1) 해결방안 1 : 인덱스 값을 설정해줌 (pass an index)

에러 메시지에 "you must pass an index" 라는 가이드라인대로 인덱스 값을 추가로 입력해주면 됩니다. 


# (1) pass an index

df = pd.DataFrame({'col_1': 1, 

                  'col_2': 2}

                  index = [0])


df

col_1col_2
012

 


물론 index 에 원하는 값을 입력해서 설정해줄 수 있습니다. index 에 'row_1' 이라고 해볼까요?

df = pd.DataFrame({'col_1': 1, 

                   'col_2': 2}

                  index = ['row_1'])


df

col_1col_2
row_112



 (2) 스칼라 값 대신 리스트 값을 입력 (use a list instead of scalar values)

입력하는 값(values)에 대괄호 [ ] 를 해주어서 리스트로 만들어준 값을 사전형의 값으로 사용하면 에러가 발생하지 않습니다. 

# (2) use a list instead of scalar values

df2 = pd.DataFrame({'col_1': [1]

                    'col_2': [2]})


df2

col_1col_2
012



 (3) pd.DataFrame.from_records([{'key': value}]) 를 사용해서 DataFrame 만들기

이때도 [ ] 로 해서 리스트 값을 입력해주어야 합니다. ( [ ] 빼먹으면 동일 에러 발생함)

# (3) use pd.DataFrame.from_records() with a list

df3 = pd.DataFrame.from_records([{'col_1': 1, 

                                  'col_2': 2}])


df3 

col_1col_2
012



 (4) pd.DataFrame.from_dict([{'key': value}]) 를 사용하여 DataFrame 만들기

(3)과 거의 유사한데요, from_records([]) 대신에 from_dict([]) 를 사용하였으며, 역시 [ ] 로 해서 리스트 값을 입력해주면 됩니다. 

# (4) use pd.DataFrame.from_dict([]) with a list

df4 = pd.DataFrame.from_dict([{'col_1': 1, 

                              'col_2': 2}])


df4

col_1col_2
012


많은 도움이 되었기를 바랍니다. 

이번 포스팅이 도움이 되었다면 아래의 '공감~'를 꾹 눌러주세요. :-)


728x90
반응형
Posted by Rfriend
,