이번 포스팅에서는 Python 설치하는 방법을 소개하겠습니다.

 

Python을 설치하고 이용하는 다양한 방법이 있겠습니다만, 이번 포스팅에서는 아래 처럼 제가 사용하는 환경 기준으로만 소개를 해보겠습니다.  

 

제 주위 Python 사용자 중에는 Pycharm 이나 Eclipse 에 설치해서 사용하는거 추천하는 분들도 계시는데요... 저는 Anaconda 설치해서 주로 spyder 를 쓰고, 가끔 jupyter notebook 사용하곤 하구요, 그동안 별 불편을 못느꼈고 좋습니다.  왠만한 라이브러리도 거의 기본 포함하고 있구요.

 

- IDE : Anaconda (spyder, jupyter notebook, IPython)

- OS : Windows, 64-BIT

- Python version : 3.6

 

 

아마도 이번 Python 설치하기 포스팅을 보는 분이라면 Python 초보일 것이므로, Python 버전 2를 해야 하나 아님 버전 3을 해야 하나 고민할 거 없이 그냥 버전 3 깔아 쓰면 될거 같습니다. (버전 3은 버전 2 호환 보장하지 않습니다만... 버전 2에서만 되는 라이브러리를 반드시 꼭 써야만 하는 상황이 아니라면 버전 3 깔아 쓰는게 좋을거 같습니다).

 

만약 회사에서 이미 Python을 사용하고 있다면 Python 선배에게 찾아가서 "Python 무슨 버전을 사용하면 되나요?" 라고 꼭 물어보시기 바랍니다.  이미 특정 버전의 Python 버전을 사용해서 뭔가를 개발해놓은 상태라서 너무 높은 버전의 Python을 사용하려고 할 때 작동하지 않을 수도 있습니다. Python 버전별 무슨 Package 들을 지원하는 지는 https://docs.continuum.io/anaconda/pkg-docs  에서 확인해 볼 수 있습니다.  Python 버전이 올라갈 수록 지원하는 Package 숫자가 조금씩 줄어들고 있음을 알 수 있습니다. (물론 시간이 지나면 상위 버전 Python에도 Package 가 점점 더 늘어나겠지만요...)

 

 

서론이 여기까지 하구요, 아래 화면 캡쳐해 놓은대로 따로 해보면서 설치를 해보시지요.  Anaconda installer 다운로드 후에 'Next' 몇번 클릭하다 보면 설치 완료되있을 겁니다. 겁나 쉬워요. (하둡 설치랑은 비교 불가 -_-;)

 

 

1~4. Anaconda installer download

   - (1) 어디서? : https://www.continuum.io/downloads

   - (2) OS : Windows  (자기 컴퓨터 맞게 선택할 것)

   - (3) Python 3.6 version (회사에서 사용할 것이면 선배에게 Python 버전 물어볼 것)

   - (4) 64-BIT (자기 컴퓨터 맞게 선택할 것)

 

 

 

 

5. Anaconda installer 더블 클릭하여 시작

 

 

 

 

6. Anaconda installer 계속 'Next' 단추 누르면서 설치 진행

 

 

 

 

7. Anaconda License Agreement : "I Agree"

 

 

 

 

8. Select Installation Type : Just Me (recommended) > Next

 

 

 

 

9. Choose Install Location : 설치 directory 지정 (default 사용) > Next

 

 

 

 

10. Advanced Installation Options : (default 사용)

   - (v) Add Anaconda to my PATH environment variable

   - (v) Register Anaconda as my default Python 3.6

   > Install

 

 

 

 

11. Installation Complete : 설치 진행~ > 완료 후 > Next

 

 

 

 

12. Anaconda 설치 끝 : Finish

 

 

 

 

13. Windows 시작 'Anaconda3'
     > 14.바탕화면에 단축 아이콘 복사하기 (Ctrl + icon drag & drop)

 

 

 

 

 

 

다 끝났습니다.  쉽지요? ^^

 

spyder 사용법은 다음 포스팅에서 소개하겠습니다.


많은 도움 되었기를 바랍니다.


이번 포스팅이 도움이 되었다면 아래의 '공감~♡'를 꾸욱 눌러주세요. ^^

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend

이전 포스팅에서는

 

 - 범용함수(universal function, ufuncs)의 정의 및 유형

 

 

(1) 1개의 배열에 대한 ufuncs (Unary universal functions) 중에서

 

 - (1-1) 올림 및 내림 범용 함수 (rounding ufuncs)

 - (1-2) 합(sums), 곱(products), 차분(difference), gradient 범용함수

 - (1-3) 지수함수(exponential function), 로그함수 (logarithmic function)

 

에 대해서 소개하였습니다.

 

이번 포스팅에서는 Unary ufuncs 4번째로

 

 - (1-4) 삼각함수 (trigonometric functions)

 

에 대해서 알아보겠습니다.

 

 

고등학교 때 배웠던 삼각함수 공식을 복습하는 것으로 먼저 시작해보겠습니다. (이미 다 아는 이과생들은 pass... ^^;  긴가민가하는 문과생들은 복기... ^^;;;)

 

sine (줄여서 sin), cosine (줄여서 cos), tangent (줄여서 tan) 공식은 아래 밑변 AC, 높이 BC, 빗변 AB를 가지고 사이각이 (theta degree) 인 직각삼각형 ABC 를 가지고 삼각함수를 나타내본 것입니다.

 

 

 

[ 삼각함수 (Trigonometric Functions) ]

 

 

 

  

삼각함수는 어디에 쓰나 싶을 텐데요, 주기적인 파동형태를 띠는 함수 (예: 주파수, 물결 파동 등) 를 나타낼 때 sine function 을 사용합니다.  벡터 내적 계산할 때 cosine function 을 사용하기도 하구요. 고속 푸리에 변환 (FFT : Fast Fourier Transformation) 과 벡터 내적 계산 관련 자세한 내용은 아래 포스팅 링크 참고하세요.

 

 

 

참고로, degree는 우리가 일반적으로 사용하는 것처럼 원을 0~360도로 표기하는 방법이구요, radian은 부채꼴의 호의 길이와 반지름의 길이가 같게 되는 각도를 1 radian이라고 합니다. 

 

180 degree = π radian 이며,

1 degree = π radian/180 ,

1 radian = 180 degree/ π = 57.3 의 관계가 있습니다. (슬슬 헷갈리기 시작하죠? -_-?)

 

 

Python NumPy의 삼각함수는 radian을 사용하기 때문에 degree 를 radian으로 바꿔주기 위해서 degree * np.py/180 을 해주었습니다. ( np.deg2rad(x) 함수를 사용해도 됨 )

 

 

 

  (1-4-1) 삼각함수 (trigonometric functions) : np.sin(), np.cos(), np.tan()

 

In [1]: import numpy as np


In [2]: np.sin(np.array((0., 30., 45., 60., 90.))*np.pi / 180.)

Out[2]: array([ 0.        ,  0.5       ,  0.70710678,  0.8660254 ,  1.        ])


In [3]: np.cos(np.array((0., 30., 45., 60., 90.))*np.pi / 180.)

Out[3]:

array([  1.00000000e+00,   8.66025404e-01,   7.07106781e-01,
          5.00000000e-01,   6.12323400e-17])


In [4]: np.tan(np.array((0., 30., 45., 60., 90.))*np.pi / 180.)

Out[4]:

array([  0.00000000e+00,   5.77350269e-01,   1.00000000e+00,
          1.73205081e+00,   1.63312394e+16])

 

 

 

 

 

참고로, 아래는 주요 Degree 혹은 radian 별  삼각함수 값 (Special values in trigonometric functions) 들입니다.

 

* 출처 : Wikipedia (https://en.wikipedia.org/wiki/Trigonometric_functions)

 

 

 

 

  (1-4-2) 싸인 곡선 그리기 (plotting sine curve)

 

 

In [5]: import matplotlib.pyplot as plt


In [6]: x = np.arange(0, 2*np.pi, 0.1)


In [7]: y = np.sin(x)


In [8]: plt.plot(x, y)

Out[8]: [<matplotlib.lines.Line2D at 0x94295f8>]

 


In [9]: plt.show()

 

 

 

 

 

주기적으로 회전 운동(a circular movement)을 하는 단자를 시간의 흐름(x축)에 따른 높낮이 변화(y축)를 시계열 그래프로 나타내면 그게 바로 위의 사인 곡선(sine curve)이 됩니다. 저 주기를 가지고 주파수를 계산할 때 FFT (Fast Fourier Transformation)을 사용하구요.

 

 

 

 

 

 

 

  (1-4-3) 삼각함수의 역수

 

삼각함수의 역수cosecant (줄여서 csc), secant (줄여서 sec), cotangent (줄여서 cot) 함수는 아래와 같이 정의합니다.

 

 

 



 

 

 

 

 

 

  (1-4-4) 역삼각함수 : np.arcsin(), np.arccos(), np.arctan

 

 

In [10]: np.arcsin(1) # pi/2

Out[10]: 1.5707963267948966

 

In [11]: np.sin(1.5707963267948966)

Out[11]: 1.0

 

In [12]: np.sin(np.arcsin(1))

Out[12]: 1.0

 


 

In [13]: np.arcsin([-1, 0, 1]) # real part lies in [-pi/2, pi/2]

Out[13]: array([-1.57079633,  0.        ,  1.57079633])


In [14]: np.arccos([-1, 0, 1]) # real part lies in [0, pi]

Out[14]: array([ 3.14159265,  1.57079633,  0.        ])


In [15]: np.arctan([-1, 0, 1]) # real part lies in [-pi/2, pi/2]

Out[15]: array([-0.78539816,  0.        ,  0.78539816])

 

 

 

 

 

  (1-4-5) degree를 radian으로 변환 : np.deg2rad(x)

            radian을 degree로 변환 : np.rad2deg(x)

 

 

degree를 radian으로 바꾸고 싶을 때는 np.deg2rad(x) 함수를 사용하면 되구요,

radian을 degree로 바꾸고 싶을 때는 np.rad2deg(x) 함수를 사용하면 됩니다.

 

 

# Convert angles from degrees to radians : np.deg2rad
# deg2rad(x) is x * pi / 180

 

In [16]: np.deg2rad(180)

Out[16]: 3.1415926535897931

 

 

# Convert angles from radians to degrees : np.rad2deg
# rad2deg(x) is 180 * x / pi

In [17]: np.rad2deg(np.pi)

Out[17]: 180.0

 

 

 

 

많은 도움 되었기를 바랍니다. 

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend

이전 포스팅에서는

 

 - 범용함수(universal function, ufuncs)의 정의 및 유형

 

 

(1) 1개의 배열에 대한 ufuncs (Unary universal functions) 중에서

 

 - (1-1) 올림 및 내림 범용 함수 (rounding ufuncs)

 - (1-2) 합(sums), 곱(products), 차분(difference), 기울기(gradient) 범용함수

 

들에 대해서 알아보았습니다.

 

이번 포스팅에서는 Unary ufuncs 중에서

 

 - (1-3) 지수함수(exponential function), 로그함수 (logarithmic function)

 

에 대해서 알아보겠습니다.

 

 

고등학교 때 지수함수, 로그함수에 대해서 배웠을 텐데요, 기억이 가물가물 하신분들을 위해서 간단히 지수함수, 로그함수에 대해서 먼저 복기를 해본 후에 Python NumPy 의 지수함수, 로그함수 사용법으로 넘어가겠습니다.

 

 

지수함수(exponential function)는 아래 왼쪽의 그래프처럼 인 형태의 함수를 말합니다.  아래 [그림1] 왼쪽의 지수함수 예시 그래프는   지수함수의 그래프로서, (x=0, y=1), (x=1, y=2) 지점을 지나고 있습니다.

 

로그함수(logarithmic function)는 지수함수의 역함수(inverse function) 입니다. 즉, 아래 [그림1] 그래프의 예를 들자면원래 지수함수였던 의 역함수는  함수인데요, 이를 표기하기 편하도록 라고 하자고 약속을 한 것입니다. (밑이 '2'인 로그함수)

 

 

[그림1] 지수함수와 로그함수의 관계 및 그래프 예시

 

 

 

 

특히, 자연상수 e 를 밑으로 하는 로그함수를 자연로그(natural logarithm) 하며, 처럼 쓰기 보다는 보통 자연상수 e를 생략하고 그냥 혹은 로 쓰곤 합니다. 아래 [그림2] 그래프를 참고하세요.

 

(참고로, 자연상수 e2.71828182846... 의 값을 가지는 무리수이며, 수학자의 이름을 따서 '오일러의 수(Euler's number)' 또는 '네이피어의 수(Napier's number)'라고도 함)

 

 

[그림2] 밑(base)이 자연상수 e 인 지수함수와 자연로그 함수 그래프

 

 

 

 

간단한 복기는 여기까지 하고요, 이제 Python NumPy의 지수함수, 로그함수에 대해 알아보겠습니다.

별것 없구요, 간단합니다. ^^'

 

  (1-3-1) 지수함수 (exponential function) : np.exp()

 

NumPy의 np.exp() 함수는 밑(base)이 자연상수 e 인 지수함수  로 변환해줍니다.

 

 

In [1]: import numpy as np


In [2]: x = np.array([0.00001, 1, 2, 4, 10, 100])


In [3]: x

Out[3]:

array([  1.00000000e-05,   1.00000000e+00,   2.00000000e+00,
          4.00000000e+00,   1.00000000e+01,   1.00000000e+02])


In [4]: np.exp(x)

Out[4]:

array([  1.00001000e+00,   2.71828183e+00,   7.38905610e+00,
          5.45981500e+01,   2.20264658e+04,   2.68811714e+43])

 

 

 

 

 (1-3-2) 로그함수 (logarithmic function) : np.log(x), np.log10(x), np.log2(x), log1p(z) 

 

지수함수의 역함수인 로그함수는 밑이 자연상수 e, 혹은 10, 또는 2 이냐에 따라서 np.log(x), np.log10(x), np.log2(x) 를 구분해서 사용합니다.

 

 

# natural logarithm (base e)

 

In [5]: np.log(x)

Out[5]:

array([-11.51292546,   0.        ,   0.69314718,   1.38629436,
           2.30258509,   4.60517019])

 

 

# log base 10

In [6]: np.log10(x)

Out[6]: array([-5.        ,  0.        ,  0.30103   ,  0.60205999,  1.        ,  2.        ])

 

 

# log base 2

In [7]: np.log2(x)

Out[7]:

array([-16.60964047,   0.        ,   1.        ,   2.        ,
           3.32192809,   6.64385619])

 

 

 

 

로그함수의 경우 위의 [그림2]의 하단에 있는 자연로그 함수 그래프를 보면 알겠지만, x=0 인 경우 y가 -무한대(-infinite)의 값을 가집니다.  아래의 Out[9]번에 보면 NumPy 에 '0'이 포함된 배열을 np.log() 함수에 대입하면 'RuntimeWarning: divide by zero encountered in log' 라는 경고메시지가 뜨고, -inf 가 포함된 배열을 반환하게 됩니다. 이럴 때 사용하는 방법이 'x+1'을 해줘서 '0' -> '1' 로 바꿔주는 겁니다. np.log1p() 함수가 바로 이 역할을 해주는 함수입니다. 그러면 y값이 '-inf' -> '0'으로 바뀌게 되죠.

 

 

In [8]: z = np.array([0, 1.71828])


In [9]: np.log(z)

C:\Anaconda3\lib\site-packages\spyderlib\widgets\externalshell\start_ipython_kernel.py:1: RuntimeWarning: divide by zero encountered in log

# -*- coding: utf-8 -*-

Out[9]: array([ -inf, 0.54132379])

 

 

# log(1+z) = np.log1p(z)

In [10]: np.log1p(z)

Out[10]: array([ 0. , 0.99999933])

 

 

 

 

물론 np.log1p() 함수를 안쓰고 그냥 np.log() 함수를 써서 아래처럼 np.log(1+z) 라고 해도 똑같은 결과를 얻을 수 있습니다.

 

 

In [11]: np.log(1+z)

Out[11]: array([ 0. , 0.99999933])

 

 

 

 

그럼, 지수함수, 로그함수는 어디에 써먹는 건가 궁금할 것 같습니다.

한가지 예를 들자면 오른쪽으로 심하게 skewed된 멱함수(power law function) 분포를 띠는 데이터를 정규분포(normal distribution) 로 변환할 때 로그 변환 (log transformation)을 사용하곤 합니다.

 

자세한 내용은 오른쪽 포스팅 참고하세요.  ☞  http://rfriend.tistory.com/53

 

 

여기서 끝내기 조금 아쉬우니 지수함수와 로그함수의 성질(properties of exponential and logarithmic function)도 복기해보겠습니다. 논문 읽다보면 지수함수와 로그함수의 성질을 알아야지 이해가 되는 공식 전개가 가끔씩 나오니 기억해두면 좋겠지요?!  증명은 생략합니다. ^^'

 

 

 

다음번 포스팅에서는 Unary ufuncs 의 네번째로 삼각함수(trigonometric functions)를 알아보겠습니다.

 

많은 도움 되었기를 바랍니다.

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend

지난번 포스팅에서는 NumPy 에서 제공하는

 

 - (1) 단일 배열 대상의 범용 함수

       (Unary Universal Functions)

 - (2) 2개 배열 대상의 범용 함수

       (Binary Universal Functions)

 

에 대해서 간략히 소개를 하였습니다.

 

그리고 단일 배열 대상의 범용 함수 중에서 (1-1) '올림 혹은 내림 (Rounding)' 함수들(np.around, np.round_, np.rint, np.fix, np.ceil, np.floor, np.trunc)에 대해서 알아보았습니다.

 

이번 포스팅에서는 단일 배열 대상의 범용 함수(Unary ufuncs) 중에서 (1-2) 배열 원소 간 곱(products), 합(sums), 차분(differences) 범용 함수들에 대해서 알아보겠습니다.  (함수가 많아서 한꺼번에 포스팅하기에 버거우므로 여러번 나누어서 포스팅합니다)

 

 

[ Unary ufuncs : 배열 원소 간 곱 (products), 합 (sums), 차분 (differences) ]

 

 

 

 (1-2) 배열 원소 간 곱(products), 합(sums), 차분(differences), 기울기(gradient) 범용함수

 

1차원 배열 b와 2차원 배열 c를 가지고 예를 들어 설명하겠습니다.

 

 In [1]: import numpy as np


In [2]: b = np.array([1, 2, 3, 4]) # 1 dimension


In [3]: b

Out[3]: array([1, 2, 3, 4])


In [4]: c = np.array([[1, 2], [3, 4]]) # 2 dimension


In [5]: c

Out[5]:

array([[1, 2],
        [3, 4]])

 

 

 

 

 (1-2-1) 배열 원소 간 곱 범용 함수 (products universal funcstions) : np.prod()

 

2차원 배열의 경우 axis=0 이면 같은 열(column)위*아래 방향으로 배열 원소 간 곱하며, axis=1 이면 같은 행(row)의 왼쪽*오른쪽 원소 간 곱을 합니다.

 

 

# (1-2-1) np.prod() : Return the product of array elements over a given axis

 

# 1 dimensional array

In [3]: b

Out[3]: array([1, 2, 3, 4])

 

In [6]: np.prod(b)  # 1*2*3*4

Out[6]: 24

 

# 2 dimensional array

In [5]: c

Out[5]:

array([[1, 2],
        [3, 4]])

 

In [7]: np.prod(c, axis=0# [1*3, 2*4]  ↓

Out[7]: array([3, 8])


In [8]: np.prod(c, axis=1# [1*2, 3*4]  →

Out[8]: array([ 2, 12])

 

 

 

 

 (1-2-2) 배열 원소 간 합치기 범용 함수 (sum universal functions) : np.sum()

 

keepdims=True 옵션을 설정하면 1 차원 배열로 배열 원소 간 합을 반환합니다.

 

 

# (1-2-2) np.sum() : Sum of array elements over a given axis

 

# 1 dimensional array

In [3]: b

Out[3]: array([1, 2, 3, 4])

 

In [9]: np.sum(b) # [1+2+3+4]

Out[9]: 10

 

# the axes which are reduced are left in the result as dimensions with size one

In [10]: np.sum(b, keepdims=True)

Out[10]: array([10])  # 1 dimension array

 

In [11]: np.sum(b, keepdims=True).shape  # 1 dimension array

Out[11]: (1,)

 

 

 

2차원 배열의 경우 axis=0 을 설정하면 같은 열(column)의 위+아래 원소 값을 더하며, axis=1 을 설정하면 같은 행(row)의 왼쪽+오른쪽 원소 값을 더하여 1차원 배열을 반환합니다.

 

 

# 2 dimensional array

In [5]: c

Out[5]:

array([[1, 2],
        [3, 4]])

 

In [12]: np.sum(c, axis=0)  # [1+3, 2+4]  ↓

Out[12]: array([4, 6])


In [13]: np.sum(c, axis=1)  # [1+2, 3+4]  →

Out[13]: array([3, 7])

 

 

 

 

 (1-2-3) NaN 이 포함된 배열 원소 간 곱하기 범용 함수 : np.nanprod()

 

np.nanprod() 함수는 NaN (Not a Numbers) 을 '1'(one)로 간주하고 배열 원소 간 곱을 합니다.

 

 

# (1-2-3) np.nanprod() : Return the product of array elements

#                             over a given axis treating Not a Numbers (NaNs) as ones

 

In [14]: d = np.array([[1, 2], [3, np.nan]])


In [15]: d

Out[15]:

array([[  1.,   2.],
        [  3.,  nan]])


In [16]: np.nanprod(d, axis=0)  # [1*3, 2*1]  ↓

Out[16]: array([ 3., 2.])


In [17]: np.nanprod(d, axis=1)  # [1*2, 3*1]  →

Out[17]: array([ 2., 3.])

 

 

 

 

 (1-2-4) NaN이 포함된 배열 원소 간 더하기 범용 함수 : np.nansum()

 

np.nansum() 함수는 NaN (Not a Numbers)을 '0'(zero)으로 간주하고 배열 원소 간 더하기를 합니다.

 

 

In [15]: d

Out[15]:

array([[  1.,   2.],
        [  3.,  nan]])

 

# (1-2-4) np.nansum() : Return the sum of array elements

#                             over a given axis treating Not a Numbers (NaNs) as zero

 

In [18]: np.nansum(d, axis=0)  # [1+3, 2+0]  ↓

Out[18]: array([ 4., 2.])


In [19]: np.nansum(d, axis=1)  # [1+2, 3+0]  →

Out[19]: array([ 3., 3.])

 

 

 

 

 (1-2-5) 배열 원소 간 누적 곱하기 범용 함수 : np.cumprod()

 

axis=0 이면 같은 행(column)의 위에서 아래 방향으로 배열 원소들을 누적(cumulative)으로 곱해 나가며, axis=1 이면 같은 열(row)에 있는 배열 원소 간에 왼쪽에서 오른쪽 방향으로 누적으로 곱해 나갑니다.

 

 

In [20]: e = np.array([1, 2, 3, 4])


In [21]: e

Out[21]: array([1, 2, 3, 4])


In [22]: f = np.array([[1, 2, 3], [4, 5, 6]])


In [23]: f

Out[23]:

array([[1, 2, 3],
        [4, 5, 6]])

 

 

# (1-2-5) np.cumprod() : Return the cumulative product of elements along a given axis

In [24]: np.cumprod(e)  # [1, 1*2, 1*2*3, 1*2*3*4]

Out[24]: array([ 1, 2, 6, 24], dtype=int32)


In [25]: np.cumprod(f, axis=0)  # [[1, 2, 3], [1*4, 2*5, 3*6]]  ↓

Out[25]:

array([[ 1,  2,  3],
        [ 4, 10, 18]], dtype=int32)


In [26]: np.cumprod(f, axis=1)  # [[1, 1*2, 1*2*3], [4, 4*5, 4*5*6]]  →

Out[26]:

array([[  1,   2,   6],
        [  4,  20, 120]], dtype=int32)

 

 

 

 

 (1-2-6) 배열 원소 간 누적 합 구하기 범용 함수 : np.cumsum()

 

axis=0 이면 같은 행(column)의 위에서 아래 방향으로 배열 원소들을 누적(cumulative)으로 합해 나가며, axis=1 이면 같은 열(row)에 있는 배열 원소 간에 왼쪽에서 오른쪽 방향으로 누적으로 합해 나갑니다.

 

 

In [21]: e

Out[21]: array([1, 2, 3, 4])

 

# (1-2-6) np.cumsum(a, axis) : Return the cumulative sum of the elements along a given axis

 

In [27]: np.cumsum(e)  # [1, 1+2, 1+2+3, 1+2+3+4]

Out[27]: array([ 1,  3,  6, 10], dtype=int32)

 

 

In [23]: f

Out[23]:

array([[1, 2, 3],
        [4, 5, 6]])

 

In [28]: np.cumsum(f, axis=0)  # [[1, 2, 3], [1+4, 2+5, 3+6]]  ↓

Out[28]:

array([[1, 2, 3],
        [5, 7, 9]], dtype=int32)


In [29]: np.cumsum(f, axis=1)  # [[1, 1+2, 1+2+3], [4, 4+5, 4+5+6]]  →

Out[29]:

array([[ 1,  3,  6],
        [ 4,  9, 15]], dtype=int32)

 

 

 

 

  (1-2-7) 배열 원소 간 n차 차분 구하기 : np.diff()

 

 

# (1-2-7) diff(a, n, axis) : Calculate the n-th discrete difference along given axis

 

In [30]: g = np.array([1, 2, 4, 10, 13, 20])


In [31]: g

Out[31]: array([ 1, 2, 4, 10, 13, 20])

 

 

# 1차 차분 (1st order differencing)

In [32]: np.diff(g)  # [2-1, 4-2, 10-4, 13-10, 20-13]

Out[32]: array([1, 2, 6, 3, 7])

 

 

# 2차 차분 (2nd order differencing) => 1차 차분 결과 Out[32] 를 가지고 한번 더 차분

In [33]: np.diff(g, n=2)  # [2-1, 6-2, 3-6, 7-3]  <- using Out[32] array (1st order difference)

Out[33]: array([ 1, 4, -3, 4])

 

 

# 3차 차분 (3rd order differencing) => 2차 차분 결과 Out[33] 을 가지고 한번 더 차분

In [34]: np.diff(g, n=3)  # [4-1, -3-4, 4-(-3)]  <- using Out[33] array (2nd order diffenence)

Out[34]: array([ 3, -7, 7])

 

 

 

2차원 배열의 경우 axis=0 이면 같은 열(column)의 아래에서 위 방향으로 차분(difference)을 하며,

axis=1 이면 같은 행(row)의 오른쪽에서 왼쪽 방향으로 차분을 합니다.

 

 

#---- 2 dimentional arrays

 

In [35]: h = np.array([[1, 2, 4, 8], [10, 13, 20, 15]])


In [36]: h

Out[36]:

array([[ 1,  2,  4,  8],
        [10, 13, 20, 15]])

 

In [37]: np.diff(h, axis=0)  # [10-1, 13-2, 20-4, 15-8] ↑

Out[37]: array([[ 9, 11, 16, 7]])


In [38]: np.diff(h, axis=1)  # [[2-1, 4-2, 8-4], [13-10, 20-13, 15-20]] ←

Out[38]:

array([[ 1,  2,  4],
        [ 3,  7, -5]])

 

 

# n=2 이면 1차 차분 결과인 Out[38] 배열에 대해 한번 더 차분

 

In [39]: np.diff(h, n=2, axis=1)  [[2-1, 4-2], [7-3, -5-7]] ←

Out[39]:

array([[  1,   2],
        [  4, -12]])

 

 

 

 

 (1-2-8) 차분 결과를 1차원 배열(1 dimensional array)로 반환해주는 함수 : ediff1d()

 

2차원 배열에 대한 차분인 np.diff(h, axis=1) 의 경우 Out[38] 처럼 2차원 배열을 반환합니다. 반면에 ediff1d(h) 함수를 사용하면 Out[41] 처럼 차분 결과를 1차원 배열로 반환합니다.

 

 

# (1-2-8) ediff1d(ary[, to_end, to_begin])

#           : The differences between consecutive elements of an array

 

In [31]: g

Out[31]: array([ 1, 2, 4, 10, 13, 20])

 

In [40]: np.ediff1d(g)

Out[40]: array([1, 2, 6, 3, 7])

 

 

# 2 dimensional array

 

In [36]: h

Out[36]:

array([[ 1,  2,  4,  8],
        [10, 13, 20, 15]])

 

# The returned array is always 1D

In [41]: np.ediff1d(h)

Out[41]: array([ 1, 2, 4, 2, 3, 7, -5])  # 1D array, not 2D array

 

 

 

np.ediff1d() 함수의 시작부분과 끝 부분의 값을 to_begin, to_end 로 설정해줄 수도 있습니다.

 

 

In [42]: np.ediff1d(h, to_begin=np.array([-100, -99]), to_end=np.array([99, 100]))

Out[42]: array([-100, -99, 1, 2, 4, 2, 3, 7, -5, 99, 100])

 

 

 

 

  (1-2-9) 기울기(gradient) 구하기 범용 함수 : np.gradient()

 

gradient는 1차 편미분한 값들로 구성된 배열입니다. 아래 예제에 np.gradient() 함수가 어떻게 계산되는지를 수식을 적어놓았으니 참고하시기 바랍니다.  말로 설명하기가 쉽지가 않네요. ^^; 

 

 

In [31]: g

Out[31]: array([ 1, 2, 4, 10, 13, 20])

 

 

# [(2-1), {(2-1)+(4-2)}/2, {(4-2)+(10-4)}/2, {(10-4)+(13-10)}/2, {(13-10)+(20-13)}/2, (20-7)]

In [43]: np.gradient(g)

Out[43]: array([ 1. , 1.5, 4. , 4.5, 5. , 7. ])

 


# N scalars specifying the sample distances for each dimension

# x축 1단위가 '2'이므로 양쪽 옆으로 x축 변화에 따른 y값 변화를 보는 것이므로 2(단위)*2(방향)으로 나누어 줌

# [(2-1)/2, {(2-1)+(4-2)}/2*2, {(4-2)+(10-4)}/2*2, {(10-4)+(13-10)}/2*2, {(13-10)+(20-13)}/2*2, (20-7)/2] 

In [44]: np.gradient(g, 2)

Out[44]: array([ 0.5 , 0.75, 2. , 2.25, 2.5 , 3.5 ])

 


# Gradient is calculated using N-th order accurate differences at the boundaries

# 양 옆에만 2차 차분 : 1 - (1.5 -1) = 0.5,   7 + (7-5) = 9

In [45]: np.gradient(g, edge_order=2)

Out[45]: array([ 0.5, 1.5, 4. , 4.5, 5. , 9. ])

 

 

 

아래는 2차원 배열에 대한 gradient 구하는 예제입니다. np.gradient(h, axis=0)과 np.gradient(h, axis=1)을 짬뽕해 놓은 것이 np.gradient(h) 라고 보면 되겠습니다.  gradient 방법은 위의 1차원에서 소개한 방법과 같습니다.

 

 

# 2 dimensional array

 

In [36]: h

Out[36]:

array([[ 1,  2,  4,  8],
        [10, 13, 20, 15]])

 

 

# the first array stands for the gradient in rows and the second one in columns direction

In [46]: np.gradient(h)

Out[46]:

[array([[  9.,  11.,  16.,   7.],
         [  9.,  11.,  16.,   7.]]),

 array([[ 1. ,  1.5,  3. ,  4. ],
         [ 3. ,  5. ,  1. , -5. ]])]

 


# The axis keyword can be used to specify a subset of axes of which the gradient is calculated

 

In [47]: np.gradient(h, axis=0)  # ↑

Out[47]:

array([[  9.,  11.,  16.,   7.],
        [  9.,  11.,  16.,   7.]])


In [48]: np.gradient(h, axis=1)  # ←

Out[48]:

array([[ 1. ,  1.5,  3. ,  4. ],
        [ 3. ,  5. ,  1. , -5. ]])

 

 

 

다음번 포스팅에서는 지수함수, 로그함수, 삼각함수에 대해서 다루어보겠습니다.

 

많은 도움 되었기를 바랍니다.

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend


티스토리 툴바