이번 포스팅에서는 Python pandas 의 Series, DataFrame의 행(row)과 열(column)에 대해서

 

 - 생성 (creation)

 - 선택 (selection, slicing and indexing)

 - 삭제 (drop, delete)

 

하는 방법에 대해서 알아보겠습니다.

 

외부 데이터셋을 불러오거나 직접 만든 다음에 데이터 전처리하는데 있어 수시로 사용하는 가장 기본이 되는 데이터 조작 기법이 행, 열 생성, 선택, 삭제입니다.

 

그동안의 포스팅을 따라해보신 분이라면 이미 많이 익숙해졌을 텐데요, 체계적으로 정리도 해보고, 복습도 해볼 겸 예를 들어서 설명해보겠습니다.

 

 

 

 

 

  (1) Series 생성 및 Series 원소 선택 (element selection, indexing)

 

pd.Series() 를 써서 별도의 index label 이 없는 간단한 Series 를 만들어 보겠습니다.

(index는 0, 1, 2, ... 정수가 자동 부여됨)

 

 

# importing library

In [1]: import numpy as np


In [2]: import pandas as pd

 


# pd.Series with ndarrary data

In [3]: Seri = pd.Series([0., 1., 2., 3., 4.])


In [4]: Seri

Out[4]:

0    0.0
1    1.0
2    2.0
3    3.0
4    4.0
dtype: float64

 

 

 

 

이제 Series의 index 위치나 조건을 가지고 indexing 을 해보겠습니다.

 

 

# Slicing pd.Series like ndarray-like

In [5]: Seri[0]

Out[5]: 0.0


In [6]: Seri[:3]

Out[6]:

0    0.0
1    1.0
2    2.0
dtype: float64


In [7]: Seri[Seri >= Seri.mean()]

Out[7]:

2    2.0
3    3.0
4    4.0
dtype: float64


In [8]: Seri[[4, 2, 0]]

Out[8]:

4    4.0
2    2.0
0    0.0
dtype: float64

 

 

 

 

다음으로, index에 label을 할당해준 Series를 만들어보고, 특정 index label을 지정해서 indexing을 해보겠습니다.

 

 

# pd.Series with index name passed

In [9]: Seri_ix = pd.Series([0., 1., 2., 3., 4.], index=['a', 'b', 'c', 'd', 'e'])


In [10]: Seri_ix

Out[10]:

a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

 


# Slicing with index label

In [11]: Seri_ix[['a', 'b', 'e']]

Out[11]:

a    0.0
b    1.0
e    4.0
dtype: float64


In [12]: Seri_ix.get(['a', 'b', 'e']) # get() method

Out[12]:

a    0.0
b    1.0
e    4.0
dtype: float64

 

 

 

 

특정 index label 을 지정해서 값(value)을 할당해보겠습니다.

 

 

# set values by index label
In [13]: Seri_ix['a'] = 100


In [14]: Seri_ix

Out[14]:

a    100.0
b      1.0
c      2.0
d      3.0
e      4.0
dtype: float64

 

 

 

 

특정 index label 이 Series에 들어있는지 아닌지 확인 (boolean True, False) 해보겠습니다.

 

 

# check index label whether it is or is'not in Series

In [15]: 'a' in Seri_ix

Out[15]: True


In [16]: 'x' in Seri_ix

Out[16]: False

 

 

 

 

 

  (2) DataFrame 행과 열 생성, 선택, 삭제 (creation, selection, drop of row and column)

 

예제로 사용할 간단한 DataFrame을 dict 로 칼럼과 값을 매핑하고, index 를 지정해서 만들어보겠습니다. DataFrame.index 로 index 확인, DataFrame.columns 로 칼럼 확인할 수 있습니다.

 

 

# importing library and making an example DataFrame

In [17]: from pandas import DataFrame


In [18]: df = DataFrame({'C1': [0., 1., 2., 3.],

    ...: 'C2': [4., 5., 6., 7.],

    ...: 'C3': [8., 9., 10., np.nan]},

    ...: index=['R1', 'R2', 'R3', 'R4'])

    ...:


In [19]: df

Out[19]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 


# the row and column labels

In [20]: df.index # row labels

Out[20]: Index(['R1', 'R2', 'R3', 'R4'], dtype='object')


In [21]: df.columns # column labels

Out[21]: Index(['C1', 'C2', 'C3'], dtype='object')

 

 

 

 

df_2 = DataFrame(df_1, index=['xx', 'xx'], columns=['xx', 'xx']) 형식처럼 기존 df_1에서 행과 열을 선별해서 df_2라는 새로운 DataFrame을 만들 수 있습니다.

 

 

In [22]: df_R1R3 = DataFrame(df, index=['R1', 'R3'])


In [23]: df_R1R3

Out[23]:

     C1   C2    C3
R1  0.0  4.0   8.0
R3  2.0  6.0  10.0


In [24]: df_C1C3 = DataFrame(df, columns=['C1', 'C3'])


In [25]: df_C1C3

Out[25]:

     C1    C3
R1  0.0   8.0
R2  1.0   9.0
R3  2.0  10.0
R4  3.0   NaN


In [26]: df_R3R1_C3C1 = DataFrame(df, index=['R3', 'R1'], columns=['C3', 'C1'])


In [27]: df_R3R1_C3C1

Out[27]:

      C3   C1
R3  10.0  2.0
R1   8.0  0.0

 

 

 

 

DataFrame에서 칼럼 이름을 지정해서 선별하는 방법은 아래 예시 처럼 df[['xx', 'xx']] 처럼 하면 됩니다.

 

 

# selecting columns from DataFrame

In [28]: df

Out[28]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN


In [29]: df[['C1', 'C2']]

Out[29]:

     C1   C2
R1  0.0  4.0
R2  1.0  5.0
R3  2.0  6.0
R4  3.0  7.0

 

 

 

 

DataFrame에 새로운 칼럼을 만들기때 (1) df['new_column'] = ... 과 (2) df.assign(new_column = ... ) 의 두가지 방법이 있습니다.

 

 

# (1) making a new column

In [30]: df['C4'] = df['C1'] + df['C2']


In [31]: df

Out[31]:

     C1   C2    C3    C4
R1  0.0  4.0   8.0   4.0
R2  1.0  5.0   9.0   6.0
R3  2.0  6.0  10.0   8.0
R4  3.0  7.0   NaN  10.0

 

 

# (2-1) assign() method

In [32]: df = df.assign(C5 = df['C1']*df['C2'])


In [33]: df

Out[33]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

# (2-2) the same with the above

In [34]: df.assign(C5 = lambda x: x.C1*x.C2)

Out[34]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

 

 

 

DataFrame의 칼럼을 삭제하는 방법에는 (1) df.drop(['xx', 'xx'], 1) 과 (2) del df['xx'] 의 방법이 있습니다.  del df['xx']은 원본 데이터프레임에서 칼럼을 삭제합니다.

 

 

# drop 'C3' column : DataFrame.drop('Column', 1)

In [35]: df_drop_C4C5 = df.drop(['C4', 'C5'], 1)


In [36]: df_drop_C4C5

Out[36]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 

 

# delete a column from original DataFrame : del DataFrame['column']

In [37]: df

Out[37]:

     C1   C2    C3    C4    C5
R1  0.0  4.0   8.0   4.0   0.0
R2  1.0  5.0   9.0   6.0   5.0
R3  2.0  6.0  10.0   8.0  12.0
R4  3.0  7.0   NaN  10.0  21.0

 

In [38]: del df['C4']  # delete 'C4' column from the original DataFrame df directly


In [39]: del df['C5']  # delete 'C5' column from the original DataFrame df directly


In [40]: df

Out[40]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 

 

 

 

DataFrame의 행(row)과 열(column)을 선택할 때는 df.['xx'][0:2] 를 예를 들어 소개합니다.

 

 

In [42]: df

Out[42]:

     C1   C2    C3
R1  0.0  4.0   8.0
R2  1.0  5.0   9.0
R3  2.0  6.0  10.0
R4  3.0  7.0   NaN

 


# selecting column form DataFrame

In [43]: df['C1']

Out[43]:

R1    0.0
R2    1.0
R3    2.0
R4    3.0
Name: C1, dtype: float64


In [44]: df.C1

Out[44]:

R1    0.0
R2    1.0
R3    2.0
R4    3.0
Name: C1, dtype: float64

 

# selecting row from DataFrame

In [45]: df[0:2]

Out[45]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

# indexing 'column' and 'row' from DataFrame

In [46]: df['C1'][0:2]

Out[46]:

R1    0.0
R2    1.0
Name: C1, dtype: float64


In [47]: df.C1[0:2]

Out[47]:

R1    0.0
R2    1.0
Name: C1, dtype: float64

 

 

 

 

index label을 가지고 행(row) 선택할 때는 df.loc['xx'] 를 사용합니다.

 

 

# Select row by label : df.loc[label]

In [48]: df.loc['R1']

Out[48]:

C1    0.0
C2    4.0
C3    8.0
Name: R1, dtype: float64


In [49]: df.loc[['R1', 'R2']]

Out[49]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

index의 label 이 아니라 정수(integer)로 indexing을 하려면 df.iloc[int] 를 사용해야 합니다.  만약 df.loc[int]를 사용하면 TypeError 가 발생합니다.

 

 

# TypeError: cannot do label indexing on with these indexers [0] of <class 'int'>

In [50]: df.loc[0] # TypeError

TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> with these indexers [0] of <class 'int'>

 

 

# Select row by interger location : df.iloc[loc]

In [51]: df.iloc[0]

Out[51]:

C1    0.0
C2    4.0
C3    8.0
Name: R1, dtype: float64


In [52]: df.iloc[0:2]

Out[52]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

DataFrame의 행(row) indexing할 때 df[0:2] 처럼 행의 범위를 ':'로 설정해주어도 됩니다.  df[0] 처럼 정수값을 지정하면 KeyError 납니다(이때는 df.iloc[0] 을 써야 함).

 

 

# KeyError: 0

In [53]: df[0]  # KeyError: 0

KeyError: 0

 

 

# Select rows : df[0:2]

In [54]: df[0:2]

Out[54]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

조건을 부여해서 열을 선택할 수도 있습니다.

 

 

# Select rows by boolean vector : df[bool_vec]

In [55]: df[df['C1'] <= 1.0]

Out[55]:

     C1   C2   C3
R1  0.0  4.0  8.0
R2  1.0  5.0  9.0

 

 

 

 

 

선택할 칼럼을 벡터 객체로 만들어 놓고, DataFrame에서 벡터 객체에 들어있는 칼럼만 선별해올 수도 있겠지요. 분석 프로세스를 자동화하려고 할 때 선행 분석 결과를 받아서 벡터 객체로 만들어 놓고, 이를 받아서 필요한 변수만 선별할 때 종종 사용하곤 합니다.

 


# Select columns by column vector : df[col_bool_vec]

In [56]: df_col_selector = ['C1', 'C2']


In [57]: df[df_col_selector]

Out[57]:

     C1   C2
R1  0.0  4.0
R2  1.0  5.0
R3  2.0  6.0
R4  3.0  7.0

 

 

 

많은 도움 되었기를 바랍니다.

 

 

 

 

 

 

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend

이번 포스팅에서는 데이터 프레임, 튜플, 리스트를 특정한 기준에 따라서 정렬, 재배치하는 방법에 대해서 알아보겠습니다.

 

오름차순 혹은 내림차순으로 정렬을 한 후에 상위 n개 (or 하위 n개), 혹은 첫번째 행 (or 마지막 행) 을 선택해야할 필요가 있을 때 사용할 수 있는 method, function 입니다.

 

DataFrame, Tuple, List 정렬 순서대로 소개해겠습니다.

 

 - (1) DataFrame 정렬 : DataFrame.sort_values()

 

 - (2) Tuple 정렬 : sorted(tuple, key)

 

 - (3) List 정렬 : list.sort(), sorted(list)

 

 

 

 

 

  (1) DataFrame 정렬 : DataFrame.sort_values()

 

먼저 필요한 모듈을 불러오고, 예제 DataFrame을 만들어보겠습니다.

 

 

In [1]: import pandas as pd


In [2]: personnel_df = pd.DataFrame({'sequence': [1, 3, 2],

   ...: 'name': ['park', 'lee', 'choi'],

   ...: 'age': [30, 20, 40]})


In [3]: personnel_df

Out[3]:

   age  name  sequence
0   30  park         1
1   20   lee         3
2   40  choi         2

 

 

 

 

(1-1) 'sequence' 열(by='sequence')을 기준으로 index(axis=0) 오름차순 정렬하기

 

 

# sorting index of DataFrame by a specific column : axis=0, columns

In [4]: personnel_df.sort_values(by=['sequence'], axis=0)

Out[4]:

   age  name  sequence
0
   30  park         1
2   40  choi         2
1
   20   lee          3

 

 

 

 

(1-2) 내림차순(descending)으로 정렬하기 : ascending=False

 

 

# sorting index of dataFrame in descending order : ascending=False

In [5]: personnel_df.sort_values(by=['sequence'], axis=0, ascending=False)

Out[5]:

   age  name  sequence
1   20   lee         3
2   40  choi         2
0   30  park         1

 

 

 

 

(1-3) 열 이름을 (알파벳 순서로) 정렬하기 :  axis=1

 

 

# sorting columns of DataFrame : axis=1

In [6]: personnel_df.sort(axis=1)

Out[6]:

   age  name  sequence
0   30  park         1
1   20   lee         3
2   40  choi         2

 

# sorting columns of DataFrame in descending order : axis=1, ascending=False

In [7]: personnel_df.sort(axis=1, ascending=False

Out[7]:

   sequence  name  age
0         1  park   30
1         3   lee   20
2         2  choi   40

 

 

 

 

(1-4) DataFrame 자체 내에서 정렬된 상태로 다시 저장하기 : inplace=True

 

 

In [8]: personnel_df

Out[8]:

age name sequence

0 30 park 1

1 20 lee 3

2 40 choi 2


# sorting DataFarme in-place : inplace=True

In [9]: personnel_df.sort_values(by=['sequence'], axis=0, inplace=True)


In [10]: personnel_df

Out[10]:

age name sequence

0 30 park 1

2 40 choi 2

1 20 lee 3

 

 

 

 

(1-5) 결측값을 처음에(na_position='first'), 혹은 마지막(na_position='last') 위치에 정렬하기

 

 

# putting NaN to DataFrame

In [11]: import numpy as np


In [12]: personnel_df = pd.DataFrame({'sequence': [1, 3, np.nan],

    ...: 'name': ['park', 'lee', 'choi'],

    ...: 'age': [30, 20, 40]})

    ...:


In [13]: personnel_df

Out[13]:

   age  name  sequence
0   30  park       1.0
1   20   lee       3.0
2   40  choi       NaN

 


# first puts NaNs at the beginning : na_position='first'

In [14]: personnel_df.sort_values(by=['sequence'], axis=0, na_position='first')

Out[14]:

   age  name  sequence
2   40  choi       NaN
0   30  park       1.0
1   20   lee       3.0

 


# last puts NaNs at the end : na_position='last'

In [15]: personnel_df.sort_values(by=['sequence'], axis=0, na_position='last')

Out[15]:

   age  name  sequence
0   30  park       1.0
1   20   lee       3.0
2   40  choi       NaN

 

 

 

 

  (2) Tuple 정렬하기 : sorted(tuple, key) method

 

 

# making a tuple

In [16]: personnel_tuple = [(1, 'park', 30),

    ...: (3, 'lee', 20),

    ...: (2, 'choi', 40)]


In [17]: personnel_tuple

Out[17]: [(1, 'park', 30), (3, 'lee', 20), (2, 'choi', 40)]

 


# use 'key' parameter to specify a function to be called on

# sort by sequence number

In [18]: sorted(personnel_tuple, key=lambda personnel: personnel[0])

Out[18]: [(1, 'park', 30), (2, 'choi', 40), (3, 'lee', 20)]


# sort by name

In [19]: sorted(personnel_tuple, key=lambda personnel: personnel[1])

Out[19]: [(2, 'choi', 40), (3, 'lee', 20), (1, 'park', 30)]

 

# sort by age

In [20]: sorted(personnel_tuple, key=lambda personnel: personnel[2])

Out[20]: [(3, 'lee', 20), (1, 'park', 30), (2, 'choi', 40)]

 

 

 

내림차순(descending order)으로 정렬하고 싶으면 'reverse=True' 옵션을 설정해주면 됩니다.

 

 

# sorting tuple in descending order by age : reverse=True

In [21]: sorted(personnel_tuple, reverse=True, key=lambda personnel: personnel[2])

Out[21]: [(2, 'choi', 40), (1, 'park', 30), (3, 'lee', 20)]

 

 

 

 

  (3) List 정렬하기 : sorted(list), or list.sort()

 

 

 

# making a list

In [23]: my_list = [0, 1, 2, 3, 4, 9, 8, 7, 6, 5]

 


# (1) sorting a list : sort(list) function

In [24]: sorted(my_list)

Out[24]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 

 

# (2) sorting a list : list.sort() method

In [25]: my_list.sort()


In [26]: my_list

Out[26]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 


# sorting a list in descending order : reverse=True

In [27]: sorted(my_list, reverse=True)

Out[27]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]


In [28]: my_list.sort(reverse=True)


In [29]: my_list

Out[29]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

 

 

 

 

많은 도움 되었기를 바랍니다.

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend

분석을 하다 보면 원본 데이터의 구조가 분석 기법에 맞지 않아서 행과 열의 위치를 바꾼다거나, 특정 요인에 따라 집계를 해서 구조를 바꿔주어야 하는 경우가 있습니다.

 

재구조화(reshaping data)를 위해 사용할 수 있는 Python pandas의 함수들로 아래와 같이 다양한 함수가 있습니다. 

 

 - (1) pivot(), pd.pivot_table()

 - (2) stack(), unstack()

 - (3) melt()

 - (4) wide_to_long()

 - (5) pd.crosstab() 

 

 

이번 포스팅에서는 마지막으로 범주형 변수로 되어있는 요인(factors)별로 교차분석(cross tabulations) 해서, 행, 열 요인 기준 별로 빈도를 세어서 도수분포표(frequency table), 교차표(contingency table) 를 만들어주는 pd.crosstab() 에 대해서 알아보겠습니다.

 

 

 

 

 

먼저 필요한 모듈을 불러오고, 예제로 사용할 (범주형 요인 변수를 가지고 있는) 간단한 데이터셋을 생성해보겠습니다.

 

 

In [1]: import pandas as pd


In [2]: from pandas import DataFrame


In [3]: data = DataFrame({'id': ['id1', 'id1', 'id1', 'id2', 'id2', 'id3'],

   ...: 'fac_1': ['a', 'a', 'a', 'b', 'b', 'b'],

   ...: 'fac_2': ['d', 'd', 'd', 'c', 'c', 'd']})


In [4]: data

Out[4]:

    fac_1   fac_2    id
0     a       d       id1
1     a       d       id1
2     a       d       id1
3     b       c       id2
4     b       c       id2
5     b       d       id3

 

 

 

 

  (1) 교차표(contingency table, frequency table) 만들기 : pd.crosstab(index, columns)

 

pd.crosstab()의 행과 열 위치에는 array 형식의 데이터가 들어갑니다

 

 

# cross tabulations using pd.crosstab => contingency table

In [5]: pd.crosstab(data.fac_1, data.fac_2)

Out[5]:
fac_2  c  d
fac_1     
a      0  3
b      2  1

 

In [6]: pd.crosstab(data.id, data.fac_1)

Out[6]: 
fac_1  a  b
id        
id1    3  0
id2    0  2
id3    0  1

 

In [7]: pd.crosstab(data.id, data.fac_2)

Out[7]:
fac_2  c  d
id        
id1    0  3
id2    2  0
id3    0  1

 

 

 

 

  (2) Multi-index, Multi-level로 교차표 만들기 : pd.crosstab([id1, id2], [col1, col2])

 

 

# cross tabulations using pd.crosstab with Multi-level columns

In [8]: pd.crosstab(data.id, [data.fac_1, data.fac_2])

Out[8]:

fac_1  a  b  
fac_2  d  c  d
id           
id1    3  0  0
id2    0  2  0
id3    0  0  1


In [9]: pd.crosstab([data.fac_1, data.fac_2], data.id)

Out[9]:

id           id1  id2  id3
fac_1 fac_2              
a     d        3    0    0
b     c        0    2    0
      d        0    0    1

 

 

 

 

  (3) 교차표의 행 이름, 열 이름 부여 : pd.crosstab(rownames=['xx'], colnames=['aa'])

 

 

# pd.crosstab(rownames, colnames) : giving rownames, colnames

In [10]: pd.crosstab(data.id, [data.fac_1, data.fac_2],

    ...: rownames=['id_num'],

    ...: colnames=['a_b', 'c_d'])

Out[10]:

a_b     a  b  
c_d     d  c  d
id_num        
id1     3  0  0
id2     0  2  0
id3     0  0  1

 

 

 

 

  (4) 교차표의 행 합, 열 합 추가하기 : pd.crosstab(margins=True)

 

 

# pd.crosstab(margins=True) : adding row/column margins

In [11]: pd.crosstab(data.id, [data.fac_1, data.fac_2],

    ...: margins=True)

Out[11]:

fac_1  a  b    All
fac_2  d  c  d   
id               
id1    3  0  0   3
id2    0  2  0   2
id3    0  0  1   1
All    3  2  1   6

 

 

 

 

 

  (5) 구성비율로 교차표 만들기 : pd.crosstab(normalize=True)

 

# pd.corsstab(normalize=True)
# : Normalize by dividing all values by the sum of values

In [12]: pd.crosstab(data.id, [data.fac_1, data.fac_2],

    ...: normalize=True)

Out[12]:

fac_1    a         b         
fac_2    d         c         d
id                           
id1    0.5  0.000000  0.000000
id2    0.0  0.333333  0.000000
id3    0.0  0.000000  0.166667

 

 

 

 

이상으로 pd.crosstab() 을 이용한 교차표 구하기를 마치겠습니다. 

 

 

교차표는 R이나 SPSS가 깔끔하게 결과를 제시해주는 것 같고요, R이 분석가가 설정할 수 있는 옵션이 조금 더 다양하므로 입맛에 맞게 교차분석도 하고 카이제곱검정도 하고 싶은 분은 아래 링크되어 있는 포스팅을 참고하세요. 

 

 

 

많은 도움이 되었기를 바랍니다.  

 

 

저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License
Posted by R Friend R_Friend


티스토리 툴바