데이터 변환 방법으로서

(1) 표준화

(2) 정규분포화

(3) 범주화

    - 이산형화

    - 이항변수화

(4) 개수 축소

(5) 차원 축소

   - (5-1) 주성분분석

   - (5-2) 요인분석

(6) 시그널 데이터 압축

의 6개 구분 중에서

 

등간척도(혹은 비율척도)로 측정한 두 개 이상의 다수의 변수들에 잠재되어 있는 공통인자를 찾아내는 (5-2) 요인분석(Factor Analysis)에 대해서 알아보겠습니다. 

 

요인분석은 통계학자 Spearman이 학생들의 여러개의 시험 성적(예: Classic, French, English, Math...) 간에 상관관계 행렬을 보다가 "어떻게 하면 연관성있는 변수들을 묶어주는 내재하는 속성을 찾을 수 있을까?"를 가지고 고민하다가 유래되었다고 합니다.

 

요인분석을 왜 하는지에 대해서는 이전에 포스팅한 (5-1) 주성분분석의 초반부를 참고하시기 바랍니다. (바로가기 ☞ 주성분분석)

 

 

 

 

대신에 요인분석과 주성분분석의 공통점과 차이점에 대해서 정리한 다른 분의 블로그(http://ai-times.tistory.com/112) 내용을 소개하겠습니다.

 

요인분석 과 주성분분석의 관계는?

많은 경우 (많은 사람들이) 요인분석과 주성분분석을 혼동한다.
두 용어를 같은 것으로 이해하는 사람들도 많다. ( 요인분석 = 주성분분석 ? ) 그러나 이것은 요인분석이나 주성분 분석을 잘 이해하지 못한 것이다. (참고는 요인분석은 Factor Analysis 이고, 주성분 분석은 Principle Component Analysis 이며 보통 PCA 라고 불린다.)

요인분석과 주성분분석은 물론 깊은 관계가 있다. 그러나 엄밀하게는 같은 것은 아니다.
요인분석을 수행하기 위해서 즉, 몇 개의 요인(잠재된 변수)들을 추출하기 위해서 여러 가지 방법이 사용될 수 있으나 그 중에 가장 많이 사용되는 방법이 <주성분 분석>이다. (그렇다고, 요인분석이 주성분분석의 상위 개념에 있는 것이라고 할 수는 없다. 집합으로 볼 때 포함 관계 아님)

 

* 공통점
[1] 모두 데이터를  축소한다. 
[2] 원래 데이터의 새로운 몇 개의 변수들로 만들어 낸다.


* 차이점
(아래에 정리해보았다. 요인분석은 FA 로, 주성분분석은 PCA 로 표현하였다.)

[1] 생성되는 변수의 수
FA  : 몇 개라고 지정할 수 없다. 데이터의 의미에 따라 다르다. 3개가 될 수도 있고, 또는 4개도 있고, ...
데이터에 서로 성관성을 갖는 변수들의 군집의 개수로 나뉘어질 것이다.
PCA : 주성분이라고 하며, 보통 2개를 찾는다. 제1주성분, 제2주성분 이라고 불린다.

[2] 생성되는 변수의 의미 (이름)
FA : 위에서 학생들의 성적데이터를 가지고 설명했듯이 분석가가 적절한 이름을 붙일 수 있다. 자동적으로 이름을 만들어주지는 않는다.
PCA : 보통 2개의 변수를 채택한다. 첫번째 것은 제1주성분, 제2주성분 이라고 부른다. (원래 데이터의 입력변수가 p라고 하면, ... 제p주성분까지 만들수 있다. 그러나 보통 2개 정도만 사용한다. 이걸로 보통 충분하다.)
요인분석에서는 서로 상관있는 변수들의 이름을 지을 수 있으나 제n주성분의 경우는 그게 좀 힘들다. (의미 중심으로 묶였다기 보다는 분류 결정력이 높은 임의의 변수를 만든 것이기 때문이다.)

[3] 생성된 변수들의 관계
FA : 새 (잠재)변수들은 기본적으로 대등한 관계를 갖는다. 어떤 것이 더 중요하다 라는 의미는 요인분석에서는 없다. 단, 분류/예측에 그 다음 단계로 사용된 다면 그 때 중요성의 의미가 부여될 것이다.  
PCA : 제1주성분이 가장 중요하고, 그 다음 제2주성분이 중요하게 취급된다. 그 다음은 제3주성분 ... 이런 식이다. 즉, 변수들 간의 중요성의 순위가 존재한다.

[4] 분석방법의 의미
FA : 목표 필드를 고려하지 않는다. 그냥 데이터가 주어지면 변수들을 비슷한 성격들로 묶어서 새로운 [잠재]변수들을 만들어 낸다.
PCA : 목표 변수를 고려한다. 목표 변수를 잘 예측/분류하기 위하여 원래 변수들의 선형 결합으로 이루어진 몇 개의 주성분(변수)들을 찾아낸다 

 

* 출처: http://ai-times.tistory.com/112

 

 

요인 추출 방법으로 주성분분석이 활용됩니다. 요인분석을 할 때 초기값 m을 어떻게 잡아주느냐에 따라서 계산 속도가 많이 영향을 받게 됩니다. 이때 보통은 반응변수들이 가지고 있는 변동량의 대부분들을 설명해줄 수 있는 고유값(eigenvalue)와 고객벡터(engenvector)의 수는 몇 개인가를 결정할 수 있는 주성분분석(Principal Component Analysis, PCA)를 활용해서 초기값 m을 잡게 됩니다. (지난 주성분분석 포스팅의 Scree Plot 참조)

 

 

[참고: 용어설명]

- 요인점수 (Factor Score) : 각 관측치의 요인 점수는 요인 점수 계수(Standardized Scoring Coefficients)와 실제 (표준화된) 관측치의 값의 곱으로 구하며, 요인별로 이를 summation하면 요인별 요인점수가 됨.

- 요인패턴 (Factor Loading) :  각 요인이 각 변수에 미치는 효과.  변수와 요인의 상관 행렬

- 공통 분산치 (Communality) : 요인에 의해 설명될 수 있는 변수의 분산량

- 요인회전 (Factor Rotation) : p개의 변수들을 m개의 요인(factor)로 묶어주기 편리하게 혹은 해석하기 쉽게하도록 축을 회전시키는 것. 직교회전에 varimax, transvarimax 등이 있고 비직교회전방법도 있으며, 보통 분산을 최대화하는 직교회전방법 varimax 를 많이 씀.

 

한국신용평가정보에서 나온 '국내 증권회사의 주요 재무제표' (2007.3.31 기준)를 가지고 요인분석을 R로 해보도록 하겠습니다. (지난번 포스팅에서는 똑같은 데이터에 대해 주성분분석을 해보았습니다)

 

이 데이터는 18개 증권사별로 V1.총자본순이익율, V2.자기자본순이익율, V3.자기자본비율, V4.부채비율, V5.자기자본회전율 재무지표 변수로 구성되어 있습니다.

 

예제 데이터('국내 증권회사의 주요 재무제표' (2007.3.31 기준)) 다운로드 ☞

secu_com_finance_2007.csv

 

R로 외부 csv 데이터 불러오기, 표준화 변환, 부채비율 방향 변환, 변수 선택, 상관계수분석, 산포도행렬은 아래와 같습니다. (지난 포스팅 주성분분석 설명과 동일)

 

주성분분석처럼 요인분석도 변수별 scale 영향을 없애기 위해서 표준화(standardization)한 관측값을 사용합니다.

 

> # csv 파일 불러오기 (file importing)
> secu_com_finance_2007 <- read.csv("C:/Users/user/Documents/R/secu_com_finance_2007.csv",
+                                   header = TRUE, 
+                                   stringsAsFactors = FALSE)
> # V1 : 총자본순이익율
> # V2 : 자기자본순이익율
> # V3 : 자기자본비율
> # V4 : 부채비율
> # V5 : 자기자본회전율
> 
> 
> # 표준화 변환 (standardization)
> secu_com_finance_2007 <- transform(secu_com_finance_2007, 
+                                    V1_s = scale(V1), 
+                                    V2_s = scale(V2), 
+                                    V3_s = scale(V3), 
+                                    V4_s = scale(V4),
+                                    V5_s = scale(V5))
> 
> # 부채비율(V4_s)을 방향(max(V4_s)-V4_s) 변환
> secu_com_finance_2007 <- transform(secu_com_finance_2007, 
+                                    V4_s2 = max(V4_s) - V4_s)
> 
> # variable selection
> secu_com_finance_2007_2 <- secu_com_finance_2007[,c("company", "V1_s", "V2_s", "V3_s", "V4_s2", "V5_s")]
> 
> 
> # Correlation analysis
> cor(secu_com_finance_2007_2[,-1])
            V1_s       V2_s       V3_s      V4_s2        V5_s
V1_s  1.00000000  0.6165153  0.3239780  0.3553930  0.01387883
V2_s  0.61651527  1.0000000 -0.5124351 -0.4659444  0.42263462
V3_s  0.32397800 -0.5124351  1.0000000  0.9366296 -0.56340782
V4_s2 0.35539305 -0.4659444  0.9366296  1.0000000 -0.53954570
V5_s  0.01387883  0.4226346 -0.5634078 -0.5395457  1.00000000
> 
> round(cor(secu_com_finance_2007_2[,-1]), digits=3) # 반올림
       V1_s   V2_s   V3_s  V4_s2   V5_s
V1_s  1.000  0.617  0.324  0.355  0.014
V2_s  0.617  1.000 -0.512 -0.466  0.423
V3_s  0.324 -0.512  1.000  0.937 -0.563
V4_s2 0.355 -0.466  0.937  1.000 -0.540
V5_s  0.014  0.423 -0.563 -0.540  1.000
> 
> 
> # Scatter plot matrix
> plot(secu_com_finance_2007_2[,-1])

 

 

 

factanal()함수를 활용해서 R로 요인분석을 해보도록 하겠습니다.

- secu_com_finance_2007_2 : 데이터를 지정해주고 (표준화된 숫자형 변수들)

- factors = 2 : 요인의 개수 지정

- ratation = "varimax" : 회전방법 지정

- scores = "regression" :  요인점수 계산 방법 지정

해주면 되겠습니다.

 

지난번 포스팅의 주성분분석에서는 동일한 데이터로 했을 때 주성분을 3개(Scree plot 보고서 결정)로 해서 분석 결과 해석을 했었는데요,

 

> # Scree Plot
> plot(prcomp(secu_com_finance_2007_2[,c(2:6)]), type="l",
+      sub = "Scree Plot")

 

 

 

 

 

 

요인분석에서 요인 개수를 3개로 집어넣었더닌 변수 5개밖에 안되는데 요인을 3개씩이나 한다고 경고메시지가 뜨네요. ^^;  그래서 요인 2개로 집어넣었습니다.

 

> # 요인분석(maximum likelihood factor analysis)
> # rotation = "varimax"
> secu_factanal <- factanal(secu_com_finance_2007_2[,2:6], 
+                           factors = 2, 
+                           rotation = "varimax", # "varimax", "promax", "none" 
+                           scores="regression") # "regression", "Bartlett"
> 
> print(secu_factanal)

Call:
factanal(x = secu_com_finance_2007_2[, 2:6], factors = 2, scores = "regression",     rotation = "varimax")

Uniquenesses:
 V1_s  V2_s  V3_s V4_s2  V5_s 
0.005 0.026 0.036 0.083 0.660 

Loadings:
      Factor1 Factor2
V1_s   0.252   0.965 
V2_s  -0.588   0.792 
V3_s   0.979         
V4_s2  0.950   0.120 
V5_s  -0.562   0.155 

               Factor1 Factor2
SS loadings      2.586   1.604
Proportion Var   0.517   0.321
Cumulative Var   0.517   0.838

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 1.59 on 1 degree of freedom.
The p-value is 0.207 

 

 

 

위에 Loadings 에 보면 Factor2의 V3_s가 숫자가 비어있는데요, 아래처럼 cutoff 를 조정해주면 모두 볼 수 있습니다.

 

> print(secu_factanal$loadings, cutoff=0) # display every loadings

Loadings:
      Factor1 Factor2
V1_s   0.252   0.965 
V2_s  -0.588   0.792 
V3_s   0.979   0.080 
V4_s2  0.950   0.120 
V5_s  -0.562   0.155 

               Factor1 Factor2
SS loadings      2.586   1.604
Proportion Var   0.517   0.321
Cumulative Var   0.517   0.838 

 

요인1(Factor1)은 자기자본비율(V3_s)과 (방햔변환 후의) 부채비율(V4_s2) 이 같이 묶였으며, 요인2(Factor2)는 총자본순이익율(V1_s)과 자기자본순이익율(V2_s)이 함께 묶었습니다.  V5_s가 두 요인 중에서 어디에 속한다고 할지 좀 애매한데요, 요인1하고는 부호가 다르므로 요인2에 묶인다고 하겠습니다.

 

 

 

 

다음으로, 요인분석 Biplot을 그려보도록 하겠습니다.  주성분분석할 때는 prcomp() 함수로 분석하고 biplot()함수로 단 한번에 아주 쉽게 Biplot을 그렸었는데요, 요인분석에서는 biplot을 단번에 그릴 수 있는 함수를 못찾았습니다. (혹시 이 포스팅 보시는 분중에 요인분석 biplot 그릴 수 있는 패키지, 함수 알고 계신분은 댓글로 공유해주시면 감사하겠습니다. 미리 꾸벅~ ☞_☜)

 

> # factor scores plotting
> secu_factanal$scores
          Factor1     Factor2
 [1,] -1.01782141 -0.28535410
 [2,] -0.17230586  0.08808775
 [3,] -0.13294211 -0.71511403
 [4,] -1.03557284  2.77950626
 [5,] -0.34416962 -1.21841127
 [6,] -0.01993668  0.44223954
 [7,] -0.62177426  1.26909067
 [8,]  1.79002399  0.28314793
 [9,]  1.60353334  0.52158445
[10,] -0.55591603 -0.12331881
[11,]  0.55387868 -1.03939155
[12,] -0.93740279 -0.74332879
[13,]  0.45680247  0.06433085
[14,] -1.13490535 -0.63034122
[15,]  1.36209539 -0.98147959
[16,]  1.57141053  0.89812864
[17,] -0.56190944  0.38006982
[18,] -0.80308800 -0.98944656
> 
> plot(secu_factanal$scores, main="Biplot of the first 2 factors")
> 
 

 

 
 
> # 관측치별 이름 매핑(rownames mapping)
> text(secu_factanal$scores[,1], secu_factanal$scores[,2], 
+      labels = secu_com_finance_2007$company, 
+      cex = 0.7, pos = 3, col = "blue")
> 
 

 

 
 
> # factor loadings plotting
> points(secu_factanal$loadings, pch=19, col = "red")
>
 

 

> text(secu_factanal$loadings[,1], secu_factanal$loadings[,2], + labels = rownames(secu_factanal$loadings), + cex = 0.8, pos = 3, col = "red") >
> # plotting lines between (0,0) and (factor loadings by Var.)
> segments(0,0,secu_factanal$loadings[1,1], secu_factanal$loadings[1,2])
> segments(0,0,secu_factanal$loadings[2,1], secu_factanal$loadings[2,2])
> segments(0,0,secu_factanal$loadings[3,1], secu_factanal$loadings[3,2])
> segments(0,0,secu_factanal$loadings[4,1], secu_factanal$loadings[4,2])
> segments(0,0,secu_factanal$loadings[5,1], secu_factanal$loadings[5,2])

 

 

 

 

가로축 Factor1이 '안정성' (자기자본비율, 부채비율) 지표라고 했는데요, Factor1 축의 오른쪽에 위치한 한양증권, 브릿지증권, 부국증권, 유화증권사 등은 안정성이 높은 회사들이라고 해석할 수 있겠습니다.

 

(참고: Factor1 = 0.252*V1_s - 0.588*V2_s + 0.979*V3_s + 0.950*V4_s2 - 0.562*V5_s)

 

 

다음으로, 세로축 Factor2는 '수익성'(총자본순이익율, 자기자본순이익율, 자기자본회전율) 지표라고 했는데요, Factor2 축의 위쪽에 위치한 미래애셋증권, 한화증권, 메리츠증권, 교보증권, 삼성증권 등이 수익성이 양호한 증권사라고 해석할 수 있겠습니다.

 

(참고: Factor2 = 0.965*V1_s + 0.792*V2_s + 0.080*V3_s + 1.20*V4-s2 + 0.155*V5_s)

 

 

이처럼 요인분석을 활용하면 다수의 변수를 안정성과 수익성이라는 두 개의 축으로 차원을 축소해서 포지셔닝맵을 그려서 쉽게 전체 상황을 파악할 수 있겠습니다.

 

다음번 포스팅에서는 기계데이터, 신호데이터에서 나오는 신호를 압축 변환하는 방법에 대해서 알아보겠습니다.

 

이번 포스팅이 도움이 되었다면 아래의 '공감 ~♡' 단추를 꾸욱 눌러주세요.^^

 

728x90
반응형
Posted by Rfriend
,